-
In neutron reaction cross-section measurements, the prompt gamma ray method is a method of obtaining cross-section data by measuring the characteristic gamma rays emitted by a nuclear reaction, thereby avoiding the interference generated by competing reaction channels. However, the prompt gamma ray method is an on-line experiment with abundant background sources, high background counts of the obtained experimental spectra, and numerous interferences such as weak peaks, overlapping peaks, Compton scattering peaks, and neutron effect peaks of Ge in HPGe, which cause the difficulty in analysing the on-line experimental spectra and the high uncertainty in the results. In this work, we study and summarise the spectrum analysis techniques of the prompt gamma ray method that can be used for measuring the neutron cross-section, and comprehensively consider the physical processes of the formation of different characteristic peaks of the prompt gamma ray method, so as to reduce the uncertainty of calculating the net area of the effect peaks in the process of on-line experimental spectrum processing. The Compton edge, weak peaks, overlapping peaks, and the neutron response peaks of the HPGe detector on-line experiment are discussed and analysed, and the net area of the effect peaks is accurately extracted by combining several reasonable functions to fit the total energy peak, the background, and the interferences. For the net area of weak peaks, this method can reduce the peak area selection caused fluctuation from 30% to less than 1%, and the difference between the fitted value of the net area and the theoretical value is comparable to the statistical uncertainty; for the overlapping peaks’ decomposition, the difference between the results obtained by this method and the theoretical value is significantly lower than 1%. The reliability of the spectral analysis method is simultaneously verified by efficiency curve analysis and goodness-of-fit calculation.
-
Keywords:
- prompt γ ray method /
- gamma production cross-section /
- spectral analysis /
- neutron /
- hyperpure germanium
[1] 葛智刚, 陈永静 2015 科学通报 60 3087
Ge Z G, Chen Y J 2015 Sci. Bull. 60 3087
[2] 卢希庭 2000 原子核物理(北京: 原子能出版社) 第168页
Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) p168
[3] 石宗仁 2002 原子核物理评论 19 42Google Scholar
Shi Z R 2002 Nucl. Phys. Rev. 19 42Google Scholar
[4] EG&G ORTEC 1998 Gamma Vision Software Manual 82
[5] CANBERRA 2002 Gennie2000 Software Manual p113
[6] Hammed M A, Gray P W, Naboulsi A H, Mac Mahon T C 1993 Nucl. Instr. Meth. A 344 543
[7] 孙琪, 王朝辉, 张奇玮, 黄翰雄, 任杰, 阮锡超, 刘世龙, 鲍杰, 栾广源, 丁琰琰, 陈雄军, 聂阳波, 刘超, 赵齐, 王金成, 贺国珠, 杜树斌 2022 原子能科学技术 56 816
Sun Q, Wang Z H, Zhang Q W, Huang H X, Ren J, Ruan X C, Liu S L, Bao J, Luan G Y, Ding Y Y, Chen X J, Nie Y B, Liu C, Zhao Q, Wang J C, He G Z, Du S B 2022 Atomic Energy Science and Technology 56 816
[8] Wu H Y, Li Z H, Tan H, Hua H, Li J, Henning W, Warburton W K, Luo D W, Wang X, Li X Q, Zhang S Q, Xu C, Chen Z Q, Wu C G, Jin Y, Lin J, Jiang D X, Ye Y L 2020 Nucl. Instr. Meth. A 975 164
[9] 吴鸿毅, 李智焕, 吴婧, 华辉, 王翔, 李湘庆, 徐川 2021 科学通报 66 3553
Wu H Y, Li Z H, Wu J, Hua H, Wang X, Li X Q, Xu C 2021 Sci. Bull. 66 3553
[10] Luo D W, Wu H Y, Li Z H, Xu C, Hua H, Li X Q, Wang X, Zhang S Q, Chen Z Q, Wu C G, Jin Y, Lin J 2021 Nucl. Sci. Tech. 32 79Google Scholar
[11] Phillips G W, Marlow K W 1976 Nucl. Instr. Meth. A 137 525Google Scholar
[12] Günter Kanisch 2017 Nucl. Instr. Meth. A 855 118Google Scholar
[13] Helmer R G, Hardy J C, Iacob V E, Sanchez-Vega M, Neilson R G, Nelson J 2003 Nucl. Instr. Meth. A 511 360Google Scholar
[14] Uher J, Roach G, Tickner J 2010 Nucl. Instr. Meth. A 619 457Google Scholar
[15] 王思广, 冒亚军, 唐培家, 李泽 2006 核技术 29 495Google Scholar
Wang S G, Mao Y J, Tang P J, Li Z 2006 Nucl. Sci. Tech. 29 495Google Scholar
[16] 卢希庭 2000原子核物理 (北京: 原子能出版社) 第65页
Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) p65
[17] Table of Radioactive Isotopes, Chu S Y F, Ekström L P, Firestone R B http://nucleardata.nuclear.lu.se/toi/listnuc.asp?sql=&Z=32 [2023-11-3]
[18] Anđelić B, Knežević D, Jovančević N, Krmar M, Petrović J, Toth A, Medić Ž, Hansman J 2017 Nucl. Instr. Meth. A 852 80Google Scholar
[19] Gete E, Measday D F, Moftah B A, Saliba M A, Stocki T J 1997 Nucl. Instrum. Methods Phys. A 388 212Google Scholar
[20] Longoria L C, Naboulsi A H, Gray P W, MacMahon T D 1990 Nucl. Instr. Meth. A 299 308Google Scholar
[21] Nelson R O, Fotiades N, Devlin M, Becker J A, Garrett P E, Younes W 2005 AIP Conf. Proc. on Nuclear Data For Science and Technology New Mexico, United States, May 24, 2005 p838
[22] Negret A, Borcea C, Dessagne Ph, Kerveno M, Olacel A, Plompen A J M, Stanoiu M 2014 Phys. Rev. C 90 034602Google Scholar
-
表 1 锗的多种同位素与中子的主要非弹性散射峰[17]
Table 1. Major inelastic scattering peaks of various isotopes of Ge with neutrons.
反应类型 (n, n'γ) (n, n'e–) 锗的同位素 70Ge 72Ge 74Ge 76Ge 70Ge 72Ge γ 射线能量/keV 176.2 630.0 595.9 545.5 1215.4 691.6 1039.3 834.1 608.4 562.9 — — — — 867.9 1108.4 — — — — 1204.2 — — — 表 2 不同ROI区域两种处理方法计数
Table 2. Counts of two method for different ROI regions.
γ射线能量/keV ROI区域/chanel GammaVision 高斯拟合 本工作 656.16 3507—3538 3567 3714 3405 3496—3549 3816 3552 3398 3480—3563 2745 3448 3344 841.574 4505—4527 2588 2709 2780 4484—4547 3047 2947 2882 4468—4563 4460 3054 2947 表 3 三种方法求取121.781 keV的净面积
Table 3. Net area of 121.781 keV is obtained by three methods.
121.781 keV GammaVision 本文 净面积 1982068 2107410 -
[1] 葛智刚, 陈永静 2015 科学通报 60 3087
Ge Z G, Chen Y J 2015 Sci. Bull. 60 3087
[2] 卢希庭 2000 原子核物理(北京: 原子能出版社) 第168页
Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) p168
[3] 石宗仁 2002 原子核物理评论 19 42Google Scholar
Shi Z R 2002 Nucl. Phys. Rev. 19 42Google Scholar
[4] EG&G ORTEC 1998 Gamma Vision Software Manual 82
[5] CANBERRA 2002 Gennie2000 Software Manual p113
[6] Hammed M A, Gray P W, Naboulsi A H, Mac Mahon T C 1993 Nucl. Instr. Meth. A 344 543
[7] 孙琪, 王朝辉, 张奇玮, 黄翰雄, 任杰, 阮锡超, 刘世龙, 鲍杰, 栾广源, 丁琰琰, 陈雄军, 聂阳波, 刘超, 赵齐, 王金成, 贺国珠, 杜树斌 2022 原子能科学技术 56 816
Sun Q, Wang Z H, Zhang Q W, Huang H X, Ren J, Ruan X C, Liu S L, Bao J, Luan G Y, Ding Y Y, Chen X J, Nie Y B, Liu C, Zhao Q, Wang J C, He G Z, Du S B 2022 Atomic Energy Science and Technology 56 816
[8] Wu H Y, Li Z H, Tan H, Hua H, Li J, Henning W, Warburton W K, Luo D W, Wang X, Li X Q, Zhang S Q, Xu C, Chen Z Q, Wu C G, Jin Y, Lin J, Jiang D X, Ye Y L 2020 Nucl. Instr. Meth. A 975 164
[9] 吴鸿毅, 李智焕, 吴婧, 华辉, 王翔, 李湘庆, 徐川 2021 科学通报 66 3553
Wu H Y, Li Z H, Wu J, Hua H, Wang X, Li X Q, Xu C 2021 Sci. Bull. 66 3553
[10] Luo D W, Wu H Y, Li Z H, Xu C, Hua H, Li X Q, Wang X, Zhang S Q, Chen Z Q, Wu C G, Jin Y, Lin J 2021 Nucl. Sci. Tech. 32 79Google Scholar
[11] Phillips G W, Marlow K W 1976 Nucl. Instr. Meth. A 137 525Google Scholar
[12] Günter Kanisch 2017 Nucl. Instr. Meth. A 855 118Google Scholar
[13] Helmer R G, Hardy J C, Iacob V E, Sanchez-Vega M, Neilson R G, Nelson J 2003 Nucl. Instr. Meth. A 511 360Google Scholar
[14] Uher J, Roach G, Tickner J 2010 Nucl. Instr. Meth. A 619 457Google Scholar
[15] 王思广, 冒亚军, 唐培家, 李泽 2006 核技术 29 495Google Scholar
Wang S G, Mao Y J, Tang P J, Li Z 2006 Nucl. Sci. Tech. 29 495Google Scholar
[16] 卢希庭 2000原子核物理 (北京: 原子能出版社) 第65页
Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) p65
[17] Table of Radioactive Isotopes, Chu S Y F, Ekström L P, Firestone R B http://nucleardata.nuclear.lu.se/toi/listnuc.asp?sql=&Z=32 [2023-11-3]
[18] Anđelić B, Knežević D, Jovančević N, Krmar M, Petrović J, Toth A, Medić Ž, Hansman J 2017 Nucl. Instr. Meth. A 852 80Google Scholar
[19] Gete E, Measday D F, Moftah B A, Saliba M A, Stocki T J 1997 Nucl. Instrum. Methods Phys. A 388 212Google Scholar
[20] Longoria L C, Naboulsi A H, Gray P W, MacMahon T D 1990 Nucl. Instr. Meth. A 299 308Google Scholar
[21] Nelson R O, Fotiades N, Devlin M, Becker J A, Garrett P E, Younes W 2005 AIP Conf. Proc. on Nuclear Data For Science and Technology New Mexico, United States, May 24, 2005 p838
[22] Negret A, Borcea C, Dessagne Ph, Kerveno M, Olacel A, Plompen A J M, Stanoiu M 2014 Phys. Rev. C 90 034602Google Scholar
Catalog
Metrics
- Abstract views: 2011
- PDF Downloads: 40
- Cited By: 0