搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特征γ射线谱分析的蒙特卡罗模拟技术

邓力 李瑞 王鑫 付元光

引用本文:
Citation:

特征γ射线谱分析的蒙特卡罗模拟技术

邓力, 李瑞, 王鑫, 付元光

Monte Carlo simulation technology based on characteristic γ-ray spectrum analysis

Deng Li, Li Rui, Wang Xin, Fu Yuan-Guang
PDF
HTML
导出引用
  • 蒙特卡罗方法(MC)是模拟核探测问题的理想方法, 用中子照射客体, 中子诱发产生非弹γ和俘获γ, 通过特征γ射线能谱和时间谱分析, 确定客体核素组成和重量百分比. 本文基于非弹γ和俘获γ时间门测量技术, 给出了脉冲源发射下探测器响应计数公式. 在中子与核作用产生次级光子方面, 采用期望值估计(expect value estimator, EVE)产光. 为了避免大量小权光子模拟带来的计算存储量增加, 设计了EVE产光与直接估计(direct estimator, DE)产光耦合. 仅增加少量计算时间, 便实现了特征γ射线解谱. 数值模拟在自主MC软件JMCT上开展, 计算结果初步验证了方法的正确有效性.
    Monte Carlo method is an ideal way to simulate criticality, shielding and nuclear detection. JMCT is a multipurpose 3D Mont Carlo (MC) neutron-photon-electron and coupled neutron /photon /electron transport code which is developed by IAPCM. The program is developed based on the combinatorial geometry parallel infrastructure JCOGIN and has the most functions of general Monte Carlo particle transport code, including the various variance reduction techniques. In addition, some new algorithms, such as Doppler broadening on-the-fly (OTF), uniform tally density (UTD), consistent adjoint driven importance sampling (CADIS), fast criticality search of boron concentration (FCSBC), the domain decomposition (DD), the two-level parallel computation of MPI and OpenMP, etc. have been developed, where the number of geometry zones, materials, tallies, depletion zones, memories and period of random number are big enough to simulate various extremely complicated problems. Also the JMCT is hybrid the discrete ordinate SN program JSNT to generate source biasing factors and weight window parameters for deep-penetration shielding problems. The input is based on the CAD modeling, and the result is a visualized output. The JMCT can provide technology support for radiation shielding design, reactor physics and criticality safe analysis. Especially, the JMCT is coupled depletion and thermal-hydraulic code for simulating the reactor feedback effect, including depletion, thermal feedback. In recent years, new function of γ-ray spectrum analysis has been developed. In this paper, the working principles of timing measure are introduced. The advanced calibration count is developed for distinguishing between inelastic γ-ray and capture γ-ray based on time bin tally. On the other hand, when neutron collides with nuclide, the secondary photon is labeled into the primary line photon and primary continuous photon, where energy of primary line photon does not change with the incident neutron energy, such as carbon spectral-line at 4.43 MeV and oxygen spectral-line at 6.13 MeV. The element components of detected object can be determined by the primary line photon. On the other hand, expect value estimator (EVE) is used to produce the secondary photons. The advantage of EVE does not leak any event even with a small probability which is important for detecting the hide exploder. However the shortage of the EVE results in producing a great number of photons with small weight. If all of these small weight photons are simulated one by one, a great amount of computation time and memory will be consumed. For avoiding this case, a new algorithm is design by coupling EVE and DE (direct estimator). The all of secondary photons from EVE only make the direct tally take a little computing time, then end the photon history and return to the DE production photon model (one photon production at most). Final, the total tally is a summation of EVE direct tally and DE scattering tally. The use of new algorithm to realize the analysis of γ-ray spectrum will increase only a little computing time. The numerical tests are done by using own Monte Carlo code JMCT. The correctness and validity of the algorithm are shown preliminarily.
      通信作者: 李瑞, li_rui@iapcm.ac.cn
    • 基金项目: 国家级-CAP1400数值反应堆关键技术(2019ZX06002033)
      Corresponding author: Li Rui, li_rui@iapcm.ac.cn
    [1]

    Briesmeister J F 1997 MCNP-a General Monte Carlo Code for n-particle Transport Code US LA-12625-M

    [2]

    Gardner R P, Verghese K 1991 Nucl. Geophys. 5 4

    [3]

    Ullo J J 1986 Nucl. Sci. Eng. 92 228Google Scholar

    [4]

    Shyu C M, Gardner R P, Verghese K 1993 Nucl. Geophys. 7 241

    [5]

    Verghese K, Gardner R P, Mickael M, et al. 1998 Nucl. Geophys 2 3

    [6]

    Masayori I, Tooru K, Keiji K 2000 Nucl. Instrum. and Methods Phys. Res. 453 614Google Scholar

    [7]

    Li D, Gang L, Baoyin Z, et al. 2018 PHYSOR2018, Cancun, Mexico, April 22–26 2018

    [8]

    Li G, Zhang B Y, Deng L 2013 ANS Transactions 109 1425

    [9]

    李刚, 邓力, 张宝印, 等 2016 65 052801Google Scholar

    Li G, Deng L, Zhang B Y, et al. 2016 Acta Phys. Sin. 65 052801Google Scholar

    [10]

    刘雄国, 邓力, 胡泽华, 等 2016 65 092501Google Scholar

    Liu X G, Deng L, Hu Z H, et al. 2016 Acta Phys. Sin. 65 092501Google Scholar

    [11]

    Li D, Tao Y, Gang L, et al. 2014 PHYSOR2014, Kyoto, Japan, September 28–October 3 2014

    [12]

    付元光, 邓力, 李刚 2018 67 172802Google Scholar

    Fu Y G, Deng L, Li G 2018 Acta Phys. Sin. 67 172802Google Scholar

    [13]

    蔡少辉 1996 物理 25 12

    Cai S H 1996 Physics 25 12

    [14]

    黄隆基 1985 放射性测井原理 (北京: 石油工业出版社)

    Huang L J 1985 Principle of Radiation Oil Well-logging (Beijing: Oil Industry Press) (in Chinese)

    [15]

    朱达智, 栾士文, 程宗华等 1984 碳氧比能谱测井 (北京: 石油工业出版社)

    Zhu Z D, Luan S W, Cheng Z H, et al. 1984 Energy Spectrum Well-logging Based on Ratio of Carbon and Oxygen (Beijing: Oil Industry Press) (in Chinese)

    [16]

    邓力 2001 博士学位论文 (西安: 西安交通大学)

    Deng L 2001 Ph.D. Dissertation (Xian: Xian Jiaotong University) (in Chinese)

    [17]

    Berger M J, Scltzer S M 1972 Nucl. Instrum. Methods 104 317Google Scholar

    [18]

    Jin Y, Gardner R P, Verghese K 1986 Nucl. Instrum. Methods 242 416Google Scholar

    [19]

    Li D, Shao H C, Zheng F H 1996 J. Nucl. Sci. Technol. 33 9

  • 图 1  碳氧比测井中子引发非弹性散射γ与俘获γ定时逻辑图

    Fig. 1.  The timing diagram of neutron induced inelastic γ and capture γ in C/O well-logging.

    图 2  行李箱模型示意图

    Fig. 2.  Sketch of luggage model.

    图 3  次级γ射线能谱计算结果比较 (a)次级γ原级线光子能谱; (b)原级连续光子与Compton散射能谱; (c) JMCT次级γ总能谱; (d) MCNP次级γ总能谱

    Fig. 3.  Comparison of calculated result about energy spectra of secondary γ: (a) JMCT primary line γ; (b) JMCT Compton γ; (c) JMCT total γ; (d) MCNP total γ.

    图 4  JMCT与MCNP次级γ流时间谱比较

    Fig. 4.  Comparison of secondary γ-fluent tine spectrum between JMCT and MCNP.

    表 1  H, C, N, O等核素发射俘获γ谱线和非弹性散射γ谱线能量

    Table 1.  Energy of spectrum line from inelastic γ and capture γ about H, C, N, O, etc.

    元素反应类型特征γ 谱线能量/MeV
    H辐射俘获2.2233
    C非弹性散射4.433
    N辐射俘获非弹性散射1.8848, 5.2692, 5.5534, 6.3224, 7.2991, 10.8290, 2.3128, 4.4444, 5.1059, 7.0280
    O非弹性散射2.7419, 3.6841, 6.1310, 6.9170, 7.1190
    F非弹性散射0.1090, 0.1971, 1.2358, 1.3480, 1.3565
    P辐射俘获非弹性散射2.1542, 3.5228, 3.9003, 4.6713, 6.7853, 1.2661, 2.2334
    S辐射俘获0.8411, 2.3797, 2.9311, 3.2208, 4.4308, 4.8698, 5.4205,
    Cl辐射俘获0.5167, 0.7884, 1.1647, 1.9509, 1.9591, 2.8639, 5.7153, 6.1109, 6.6195, 7.4138
    As辐射俘获非弹性散射6.2941, 6.8094, 7.0192, 0.2646, 0.2795, 0.5725
    Al辐射俘获非弹性散射0.9840, 2.9598, 4.1329, 4.2522, 7.7239, 0.8438, 1.0144, 2.2118
    Fe辐射俘获非弹性散射0.3522, 1.7251, 5.9203, 6.0185, 7.6311, 7.6455, 8.8860, 9.2980, 0.8468,
    1.2383, 1.4082, 1.8105, 2.1129, 2.5985
    下载: 导出CSV

    表 2  烈性炸药(TNT)和某些化学武器中所含元素的重量百分比

    Table 2.  Weight percentage of elements in some spirited detonators (TNT) and chemical weapons.

    元素TNT沙林/GB神经性
    毒气/VX
    芥子气/HD孁烂性
    毒气/L
    氢(H)2.27.19.75.01.0
    碳(C)37.034.349.430.211.4
    氮(N)18.55.2
    氧(O)42.322.912.0
    氟(F)13.6
    磷(P)22.111.6
    硫(S)12.020.1
    氯(Cl)44.751.3
    砷(As)36.1
    下载: 导出CSV

    表 3  JMCT与MCNP次级γ流计算结果比较

    Table 3.  Comparison of calculated results about secondary γ between JMCT and MCNP.

    程序原级线
    光子
    原级连续
    光子
    散射光子Jγ
    光子流
    偏差/%
    JMCT4.92519-704.34947-85.36014-70.4406
    MCNP5.38386-7标准解
    注: 偏差 = [Jγ(JMCT) – Jγ(MCNP)]/ Jγ(MCNP).
    下载: 导出CSV

    表 4  H, C, N, O瞬发γ计数及份额

    Table 4.  Count and percentage of prompt γ from H, C, N and O.

    元素计数份额比/%统计误差/%
    H3.02643 × 10–1100.56
    C1.77077 × 10–7360.49
    N1.11146 × 10–7230.12
    O2.03254 × 10–7410.18
    注: 偏差 = [Jγ(JMCT) – Jγ(MCNP)]/ Jγ(MCNP).
    下载: 导出CSV
    Baidu
  • [1]

    Briesmeister J F 1997 MCNP-a General Monte Carlo Code for n-particle Transport Code US LA-12625-M

    [2]

    Gardner R P, Verghese K 1991 Nucl. Geophys. 5 4

    [3]

    Ullo J J 1986 Nucl. Sci. Eng. 92 228Google Scholar

    [4]

    Shyu C M, Gardner R P, Verghese K 1993 Nucl. Geophys. 7 241

    [5]

    Verghese K, Gardner R P, Mickael M, et al. 1998 Nucl. Geophys 2 3

    [6]

    Masayori I, Tooru K, Keiji K 2000 Nucl. Instrum. and Methods Phys. Res. 453 614Google Scholar

    [7]

    Li D, Gang L, Baoyin Z, et al. 2018 PHYSOR2018, Cancun, Mexico, April 22–26 2018

    [8]

    Li G, Zhang B Y, Deng L 2013 ANS Transactions 109 1425

    [9]

    李刚, 邓力, 张宝印, 等 2016 65 052801Google Scholar

    Li G, Deng L, Zhang B Y, et al. 2016 Acta Phys. Sin. 65 052801Google Scholar

    [10]

    刘雄国, 邓力, 胡泽华, 等 2016 65 092501Google Scholar

    Liu X G, Deng L, Hu Z H, et al. 2016 Acta Phys. Sin. 65 092501Google Scholar

    [11]

    Li D, Tao Y, Gang L, et al. 2014 PHYSOR2014, Kyoto, Japan, September 28–October 3 2014

    [12]

    付元光, 邓力, 李刚 2018 67 172802Google Scholar

    Fu Y G, Deng L, Li G 2018 Acta Phys. Sin. 67 172802Google Scholar

    [13]

    蔡少辉 1996 物理 25 12

    Cai S H 1996 Physics 25 12

    [14]

    黄隆基 1985 放射性测井原理 (北京: 石油工业出版社)

    Huang L J 1985 Principle of Radiation Oil Well-logging (Beijing: Oil Industry Press) (in Chinese)

    [15]

    朱达智, 栾士文, 程宗华等 1984 碳氧比能谱测井 (北京: 石油工业出版社)

    Zhu Z D, Luan S W, Cheng Z H, et al. 1984 Energy Spectrum Well-logging Based on Ratio of Carbon and Oxygen (Beijing: Oil Industry Press) (in Chinese)

    [16]

    邓力 2001 博士学位论文 (西安: 西安交通大学)

    Deng L 2001 Ph.D. Dissertation (Xian: Xian Jiaotong University) (in Chinese)

    [17]

    Berger M J, Scltzer S M 1972 Nucl. Instrum. Methods 104 317Google Scholar

    [18]

    Jin Y, Gardner R P, Verghese K 1986 Nucl. Instrum. Methods 242 416Google Scholar

    [19]

    Li D, Shao H C, Zheng F H 1996 J. Nucl. Sci. Technol. 33 9

  • [1] 张显, 刘仕倡, 魏军侠, 李树, 王鑫, 上官丹骅. 结合源偏倚和权窗的蒙特卡罗全局减方差方法.  , 2024, 73(4): 042801. doi: 10.7498/aps.73.20231493
    [2] 上官丹骅, 闫威华, 魏军侠, 高志明, 陈艺冰, 姬志成. 多物理耦合计算中动态输运问题高效蒙特卡罗模拟方法.  , 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [3] 上官丹骅, 姬志成, 邓力, 李瑞, 李刚, 付元光. 蒙特卡罗临界计算全局计数问题新策略研究.  , 2019, 68(12): 122801. doi: 10.7498/aps.68.20182276
    [4] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟.  , 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [5] 李树. 光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法.  , 2018, 67(21): 215201. doi: 10.7498/aps.67.20180932
    [6] 上官丹骅, 邓力, 李刚, 张宝印, 马彦, 付元光, 李瑞, 胡小利. 蒙特卡罗临界计算全局计数效率新算法研究.  , 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [7] 上官丹骅, 邓力, 张宝印, 姬志成, 李刚. 非定常输运问题适应于消息传递并行编程环境的香农熵计算方法.  , 2016, 65(14): 142801. doi: 10.7498/aps.65.142801
    [8] 上官丹骅, 李刚, 邓力, 张宝印, 李瑞, 付元光. 反应堆蒙特卡罗临界模拟中均匀裂变源算法的改进.  , 2015, 64(5): 052801. doi: 10.7498/aps.64.052801
    [9] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究.  , 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [10] 丛东亮, 许朋, 王叶兵, 常宏. 锶热原子束二维准直的动力学过程的蒙特卡罗模拟及实验研究.  , 2013, 62(15): 153702. doi: 10.7498/aps.62.153702
    [11] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟.  , 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [12] 李鹏, 许州, 黎明, 杨兴繁. 金刚石薄膜中二次电子输运的蒙特卡罗模拟.  , 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [13] 文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏. 蒙特卡罗模拟中相关变量随机数序列的产生方法.  , 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [14] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真.  , 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [15] 张鹏飞, 苏兆锋, 孙剑锋, 杨海亮, 李永东, 高屹, 孙江, 王洪广, 尹佳辉, 梁天学, 孙凤举, 王志国. 阳极杆箍缩二极管产生X射线能谱的模拟计算.  , 2011, 60(10): 100204. doi: 10.7498/aps.60.100204
    [16] 赵学峰, 李三伟, 蒋刚, 王传珂, 李志超, 胡峰, 李朝光. 超热电子与金黑腔靶作用产生硬X射线的蒙特卡罗模拟.  , 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [17] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟.  , 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [18] 赵宗清, 丁永坤, 谷渝秋, 王向贤, 洪 伟, 王 剑, 郝轶聃, 袁永腾, 蒲以康. 超短超强激光与铜靶相互作用产生Kα源的蒙特卡罗模拟.  , 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [19] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真.  , 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [20] 郝樊华, 胡广春, 刘素萍, 龚 建, 向永春, 黄瑞良, 师学明, 伍 钧. 钚体源样品γ能谱计算的蒙特卡罗方法.  , 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
计量
  • 文章访问数:  8750
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-03-23
  • 刊出日期:  2020-06-05

/

返回文章
返回
Baidu
map