-
新一代反应堆对运行效率和安全性提出了更高的需求, 迫切需要更精确的非弹性散射截面数据. 不锈钢作为关键结构材料, 其中关键元素铬的非弹性散射截面的实验测量在国内仍处于空白, 同时国外的测量结果分歧较大, 严重限制了核反应堆计算的准确性. 在中国原子能科学研究院的HI-13串列加速器, 利用瞬发γ射线测量法, 在国内首次测量得到647.47 keV, 935.54 keV, 1333.65 keV, 1434.07 keV和1530.67 keV五条非弹γ的实验产生截面, 获得了三个能量(5.62 MeV, 6.24 MeV和7.95 MeV)的中子轰击52Cr的非弹散射截面实验结果. 同时, 利用理论模型计算了能量小于20 MeV的中子与52Cr的非弹性散射截面. 结果表明, 三个中子能点得到的γ产生截面与Mihailescu等的结果[Mihailescu L C, Borcea C, Koning A J, Plompen A J M 2007 Nucl. Phys. A 799 1]在误差范围内吻合, 且不确定度更小, 实验测量数据支持Mihailescu等的结果. 理论模型计算与实验数据有较大差异, 可能来源于52Cr能级纲图的高激发态部分的实验信息缺失.With the development of next-generation reactors, the demand for higher precision in nuclear data has increased significantly to ensure operational efficiency and safety. Especially, inelastic scattering cross-section is one of the key parameters in nuclear reactor physics calculations, which directly affects neutron economy, thermal-hydraulic design, and safety analysis. Stainless steel is widely used in the nuclear industry. Chromium (Cr) is one of the main alloying elements in stainless steel, and 52Cr is the most abundant isotope in nature. However, the measurement of the inelastic scattering cross-section of 52Cr has not been explored in China, so the study of the 52Cr (n, n′ γ) reaction cross-section is crucial for nuclear reactor calculations. In this study, the neutron beams with energies of 5.62, 6.24, and 7.95 MeV via the D (d, n) 3He reaction are generated from the HI-13 tandem accelerator at the Institute of Atomic Energy in China. These neutrons are used to bombard a 52Cr target. Four CLOVER detectors are located at 30°, 70°, 110° and 150° relative to the beam direction in the horizontal plane. The prompt γ-ray method is used to measure the inelastic scattering cross-section by using an HPGe detector array. This is the first time that the cross-sections of five inelastic γ-rays with energies of 647.47 keV, 935.54 keV, 1333.65 keV, 1434.07 keV and 1530.67 keV have been obtained experimentally in China. Additionally, theoretical model calculations are performed to determine the inelastic scattering cross-sections of neutrons with energies below 20 MeV interacting with 52Cr. In the analysis of the experimental data, γ-ray self-absorption correction, neutron flux attenuation and multiple scattering correction are considered. The total experimental uncertainty includes the measurement uncertainty, correction term uncertainty, and standard cross-section uncertainty. The results show that the γ-ray production cross-sections obtained at the three neutron energy points are in good agreement with the data measured by Mihailescu et al. [Mihailescu L C, Borcea C, Koning A J, Plompen A J M 2007 Nucl. Phys. A 799 1] within the error margins, and the uncertainties are smaller. However, significant discrepancies are observed between the theoretical model calculations and the experimental data, which may be attributed to the lack of experimental information about the high-excitation-energy levels in the 52Cr level scheme. This study not only fills a gap in the measurement of the 52Cr inelastic scattering cross-section but also provides important nuclear data for designing and optimizing the next-generation reactors.
-
Keywords:
- neutron inelastic scattering /
- gamma production cross-section /
- prompt γray method /
- high purity germanium detector
-
表 1 文献中(EXFOR)部分(n, n′ γ)反应截面测量汇总[6]
Table 1. Summary of the main characteristics of (n, n′ γ) cross section measurements from the literature (EXFOR) [6].
作者(年份) 实验设施 探测器 入射中子能量范围/MeV D.W.Van Patter(1962) Van de Graaff NaI 0.98—3.31 F.Voss et al.(1975) Isochronous cyclotron Ge(Li) 0.5—10 Olsen et al.(1975) Van de Graaff Ge(Li) 3—6 A. A. Lychagin et al.(1988) Cockcroft-Walton accelerator NaI 14.1 S.P.Simakov(1992) Weapons Neutron Research (WNR) NaI 14.1 L.C. Mihailescu(2007) Linear accelerator EC Joint Research Centre, Geel 2 large volumn HPGe 非弹反应阈值—18 D.N.Grozdanov(2020) TANGRA setup on the basis of ING-27 neutron generator Silicon detector, BGO, HPGe 14.1 表 2 不确定度来源
Table 2. Sources of uncertainty.
符号 不确定度来源 数值/% ΔN 统计 3.5 Δn 中子注量率 3.0 Δm 样品定量 0.2 Δε 探测效率 1.5 Δc 修正项 3.0 Δσ 标准截面 3.0 Δtot 总不确定度 6.5 -
[1] 阮锡超 2023 核技术 46 080003
Google Scholar
Ruan X C 2023 Nucl. Tech. 46 080003
Google Scholar
[2] 刘世龙, 葛智刚, 阮锡超, 陈永静 2020 原子能科学技术 54 65
Google Scholar
Liu S L, Ge Z G, Ruan X C, Chen Y J 2020 At. Energy Sci. Technol. 54 65
Google Scholar
[3] Aliberti G, Palmiotti G, Salvatores M, Stenberg C G 2004 Nucl. Sci. Eng. 146 13
Google Scholar
[4] Palmiotti G, Salvatores M 1984 Nucl. Sci. Eng. 87 333
Google Scholar
[5] Salvatores M, Palmiotti G 1985 Ann. Nucl. Energy 12 291
Google Scholar
[6] https://www-nds.iaea.org/exfor/servlet/X4sSearch5 [2024-11-6]
[7] 石宗仁 2002 原子核物理评论 19 42
Shi Z R 2002 Nucl. Phys. Rev. 19 42
[8] Mihailescu L C, Borcea C, Koning A J, Plompen A J M 2007 Nucl. Phys. A 799 1
[9] 孙琪, 王朝辉, 张奇玮, 黄翰雄, 任杰, 阮锡超, 刘世龙, 鲍杰, 栾广源, 丁琰琰, 陈雄军, 聂阳波, 刘超, 赵齐, 王金成, 贺国珠, 杜树斌 2022 原子能科学技术 56 816
Sun Q, Wang Z H, Zhang Q W, Huang H X, Ren J, Ruan X C, Liu S L, Bao J, Luan G Y, Ding Y Y, Chen X J, Nie Y B, Liu C, Zhao Q, Wang J C, He G Z, Du S B 2022 At. Energy Sci. Technol. 56 816
[10] Luo D W, Wu H Y, Li Z H, Xu C, Hua H, Li X Q, Wang X, Zhang S Q, Chen Z Q, Wu C G, Jin Y, Lin J 2021 Nucl. Sci. Tech. 32 79
Google Scholar
[11] Wu H Y, Li Z H, Tan H, Hua H, Li J, Henning W, Warburton W K, Luo D W, Wang X, Li X Q, Zhang S Q, Xu C, Chen Z Q, Wu C G, Jin Y, Lin J, Jiang D X, Ye Y L 2020 Nucl. Instrum. Methods Phys. Res. , Sect. A 975 164200
Google Scholar
[12] 吴鸿毅, 李智焕, 吴婧, 华辉, 王翔, 李湘庆, 徐川 2021 科学通报 66 3553
Google Scholar
Wu H Y, Li Z H, Wu J, Hua H, Wang X, Li X Q, Xu C 2021 Chin. Sci. Bull. 66 3553
Google Scholar
[13] Tarasov O B, Bazin D 2016 Nucl. Instrum. Methods Phys. Res. , Sect. B 376 185
Google Scholar
[14] Schlegel D, Guldbakke S 2000 Monte Carlo 2000 Conference Lisbon, Portugal, October 23—26, 2000 p881
[15] Hutcheson A, Angell C, Becker J A, Crowell A S, Dashdorj D, Fallin B, Fotiades N, Howell C R, Karwowski H J, Kawano T, Kelley J H, Kwan E, Macri R A, Nelson R O, Pedroni R S, Tonchev A P, Tornow W 2009 Phys. Rev. C 80 014603
Google Scholar
[16] Olliver H, Glasmacher T, Stuchbery A E 2003 Phys. Rev. C 68 044312
Google Scholar
[17] 裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第163—174页
Pei L C, Zhang X Z 1980 Monte Carlo Methods and Their Application in Particle Transport Problems (Beijing: Science Press) pp163—164
[18] Dashdorj D, Mitchell G E, Becker J A, Agvaanluvsan U, Bernstein L A, Younes W, Garrett P E, Chadwick M B, Devlin M, Fotiades N, Kawano T, Nelson R O https://www-nds.iaea.org/exfor/servlet/X4sGetSubent?reqx=25411&subID=14162002&plus=1 [2024-11-6]
[19] Zhang J S 2002 Nucl. Sci. Eng. 142 207
Google Scholar
[20] Koning A, Hilaire S, Goriely S 2023 Eur. Phys. J. A 59 131
Google Scholar
计量
- 文章访问数: 403
- PDF下载量: 39
- 被引次数: 0