-
In this paper, we calculate the potential energy curves of 5 -S and 10 , which arise from the first two dissociation limits of the AlH+ cation. The calculations are done using the complete active space self-consistent field method, which combines with the valence internally contracted multireference configuration interaction plus the Davidson modification (icMRCI+Q) approach with the aug-cc-pV6Z basis set. To improve the reliability and accuracy of the potential energy curves, the core-valence correlation and scalar relativistic correction, as well as the extrapolation of potential energy to the complete basis set limit are taken into account. The spin-orbit coupling is computed using the state interaction approach with the Breit-Pauli Hamiltonian. Employing the potential energy curves obtained in this study, we evaluate the spectroscopic parameters and vibrational levels for the bound and quasi-bound 4 -S and 8 states. The computed spectroscopic constants of X2+ and A2 states are all in agreement with the available experimental data. Moreover, the present theoretical energy separations between each higher channel (Al+(3P0) + H(2S1/2), Al+(3P1) + H(2S1/2), and Al+(3P2) + H(2S1/2) and the lowest one (Al+(1S0) + H(2S1/2)) are in excellent agreement with the experimental values. The transition dipole moments are calculated using the valence internally contracted multireference configuration interaction approach with the aug-cc-pV6Z basis set for the 2(1/2) X21/2+ and A23/2X21/2+. Based on the obtained potential energy curves and transition dipole moments, highly diagonally distributed Franck-Condon factors (f00 and f11) and large vibrational branching ratios are determined for the 2(1/2)1st well (v'=0, 1) X21/2+ (v) and A23/2(v'=0,1)X21/2+(v) transitions; short spontaneous radiative lifetime and narrow radiative width for the 2(1/2)1st well (v'=0, 1) and A23/2 (v'=0, 1) are also predicted in this study, which are suitable for the rapid laser cooling of the AlH+ cation. The three required laser cooling wavelengths are all in the ultraviolet region, that is, 1) for the X21/2+(v) 2(1/2)1st well (v') transition:the main repumping laser 00=358.74 nm, two repumping lasers 10=379.27 nm and 21=374.86 nm; 2) for the X21/2+ (v) A23/2 (v') transition:the main repumping laser 00=357.43 nm, two repumping lasers 10=377.80 nm and 21=373.26 nm. In addition, the recoil temperature for the X21/2+ (v=0) 2(1/2)1st well (v'=0) and X21/2+ (v=0) A23/2 (v'=0) transitions are obtained. The results imply the feasibility of laser cooling of AlH+ cation. In addition, the spin-orbit coupling effect on the spectroscopic parameter, vibrational level, and laser cooling of AlH+ cation are evaluated.
-
Keywords:
- spectroscopic parameters /
- spin-orbit coupling /
- Franck-Condon factors and radiative lifetimes /
- laser cooling
[1] Halfen D T, Ziurys L M 2004 Astrophys. J. 607 L63
[2] Nguyen J H V, Viteri C R, Hohenstein E G, Sherrill C D, Brown K R, Odom B 2011 New J. Phys. 13 063023
[3] Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783
[4] Holst W 1933 Nature 132 1003
[5] Holst W 1934 Z. Phys. 89 40
[6] Almy G M, Watson M C 1934 Phys. Rev. 45 871
[7] Rafi M, Baig M A, Qureshi M H 1980 IL. Nuo. Cim. 56 289
[8] Balfour W J, Lindgren B 1984 J. Phys. B:At. Mol. Opt. Phys. 17 L861
[9] Mller B, Ottinger C 1986 J. Chem. Phys. 85 232
[10] Mller B, Ottinger C 1988 Z. Naturforsch. A:Phys. Sci. 43 1007
[11] Szajna W, Zachwieja M 2011 J. Mol. Spectrosc. 269 56
[12] Seck C M, Hohenstein E G, Lien C Y, Stollenwerk P R, Odom B C 2014 J. Mol. Spectrosc. 300 108
[13] Rosmus P, Meyer W 1977 J. Chem. Phys. 66 13
[14] Guest M F, Hirst D M 1981 Chem. Phys. Lett. 84 167
[15] Klein R, Rosmus P, Werner H J 1982 J. Chem. Phys. 77 3559
[16] Li G X, Gao T, Zhang Y G 2008 Chin. Phys. B 17 2040
[17] Ferrante F, Prestianni A, Armata N 2017 Theor. Chem. Acc. 136 3
[18] Wu D L, Tan B, Zeng X F, Wan H J, Xie A D, Yan B, Ding D J 2016 Chin. Phys. Lett. 33 063102
[19] Luo H F, Wan M J, Huang D H 2018 Acta Phys. Sin. 67 043101 (in Chinese) [罗华锋, 万明杰, 黄多辉 2018 67 043101]
[20] Li Y C, Meng T F, Li C L, Qiu X B, He X H, Yang W, Guo M J, Lai Y Z, Wei J L, Zhao Y T 2017 Acta Phys. Sin. 66 163101 (in Chinese) [李亚超, 孟腾飞, 李传亮, 邱选兵, 和小虎, 杨雯, 郭苗军, 赖云忠, 魏计林, 赵延霆 2017 66 163101]
[21] Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101 (in Chinese) [张云光, 张华, 窦戈, 徐建刚 2017 66 233101]
[22] Yang R, Tang B, Gao T 2016 Chin. Phys. B 25 043101
[23] Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2018 Spectrochim. Acta Part A:Mol. Biomol.Spectrosc. 193 78
[24] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[25] Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61
[26] Woon D E, Dunning Jr T H 1994 J. Chem. Phys. 100 2975
[27] van Mourikt T, Wilson A K, Dunning Jr T H 1999 Mol. Phys. 96 529
[28] Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317
[29] Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548
[30] de Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48
[31] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
[32] Xing W, Sun J F, Shi D H, Zhu Z L 2018 Acta Phys. Sin. 67 063301 (in Chinese) [邢伟, 孙金锋, 施德恒, 朱遵略 2018 67 063301]
[33] le Roy R J 2007 LEVEL 8.0:A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels (Waterloo:University of Waterloo Chemical Physics Research Report) CP-663
-
[1] Halfen D T, Ziurys L M 2004 Astrophys. J. 607 L63
[2] Nguyen J H V, Viteri C R, Hohenstein E G, Sherrill C D, Brown K R, Odom B 2011 New J. Phys. 13 063023
[3] Lien C Y, Seck C M, Lin Y W, Nguyen J H V, Tabor D A, Odom B C 2014 Nat. Commun. 5 4783
[4] Holst W 1933 Nature 132 1003
[5] Holst W 1934 Z. Phys. 89 40
[6] Almy G M, Watson M C 1934 Phys. Rev. 45 871
[7] Rafi M, Baig M A, Qureshi M H 1980 IL. Nuo. Cim. 56 289
[8] Balfour W J, Lindgren B 1984 J. Phys. B:At. Mol. Opt. Phys. 17 L861
[9] Mller B, Ottinger C 1986 J. Chem. Phys. 85 232
[10] Mller B, Ottinger C 1988 Z. Naturforsch. A:Phys. Sci. 43 1007
[11] Szajna W, Zachwieja M 2011 J. Mol. Spectrosc. 269 56
[12] Seck C M, Hohenstein E G, Lien C Y, Stollenwerk P R, Odom B C 2014 J. Mol. Spectrosc. 300 108
[13] Rosmus P, Meyer W 1977 J. Chem. Phys. 66 13
[14] Guest M F, Hirst D M 1981 Chem. Phys. Lett. 84 167
[15] Klein R, Rosmus P, Werner H J 1982 J. Chem. Phys. 77 3559
[16] Li G X, Gao T, Zhang Y G 2008 Chin. Phys. B 17 2040
[17] Ferrante F, Prestianni A, Armata N 2017 Theor. Chem. Acc. 136 3
[18] Wu D L, Tan B, Zeng X F, Wan H J, Xie A D, Yan B, Ding D J 2016 Chin. Phys. Lett. 33 063102
[19] Luo H F, Wan M J, Huang D H 2018 Acta Phys. Sin. 67 043101 (in Chinese) [罗华锋, 万明杰, 黄多辉 2018 67 043101]
[20] Li Y C, Meng T F, Li C L, Qiu X B, He X H, Yang W, Guo M J, Lai Y Z, Wei J L, Zhao Y T 2017 Acta Phys. Sin. 66 163101 (in Chinese) [李亚超, 孟腾飞, 李传亮, 邱选兵, 和小虎, 杨雯, 郭苗军, 赖云忠, 魏计林, 赵延霆 2017 66 163101]
[21] Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101 (in Chinese) [张云光, 张华, 窦戈, 徐建刚 2017 66 233101]
[22] Yang R, Tang B, Gao T 2016 Chin. Phys. B 25 043101
[23] Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2018 Spectrochim. Acta Part A:Mol. Biomol.Spectrosc. 193 78
[24] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[25] Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61
[26] Woon D E, Dunning Jr T H 1994 J. Chem. Phys. 100 2975
[27] van Mourikt T, Wilson A K, Dunning Jr T H 1999 Mol. Phys. 96 529
[28] Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317
[29] Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548
[30] de Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48
[31] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
[32] Xing W, Sun J F, Shi D H, Zhu Z L 2018 Acta Phys. Sin. 67 063301 (in Chinese) [邢伟, 孙金锋, 施德恒, 朱遵略 2018 67 063301]
[33] le Roy R J 2007 LEVEL 8.0:A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels (Waterloo:University of Waterloo Chemical Physics Research Report) CP-663
Catalog
Metrics
- Abstract views: 5962
- PDF Downloads: 101
- Cited By: 0