Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimal design of Cs2AgBi0.75Sb0.25Br6 perovskite solar cells

Wang Yue-Rong Tian Han-Min Zhang Deng-Qi Liu Wei-Long Ma Xu-Lei

Citation:

Optimal design of Cs2AgBi0.75Sb0.25Br6 perovskite solar cells

Wang Yue-Rong, Tian Han-Min, Zhang Deng-Qi, Liu Wei-Long, Ma Xu-Lei
PDF
HTML
Get Citation
  • Double perovskite solar cells have attracted much attention due to their low cost, high performance, environmental friendliness, and strong stability. In this study, the effect of thickness of perovskite layer, band offset, metal electrode work function, the thickness and doping concentration of the transport layer on the efficiency of Cs2AgBi0.75Sb0.25Br6 solar cells are analyzed by using Silvaco TCAD to improve device performance. This preliminary study of device based on Spiro-OMeTAD as hole transport layer (HTL) and ZnO as electron transport layer (ETL) shows that the photovoltaic conversion efficiency (PCE) is 12.66%. The results show that the efficiency gradually saturates when the thickness of the perovskite layer is greater than 500 nm. The optimal conduction band offset (CBO) ranges from 0 eV to +0.5 eV and the optimal valence band offset (VBO) from –0.1 eV to +0.2 eV. After changing the device's ETL into ZnOS and HTLs into MoO3, Cu2O and CuSCN, respectively, and optimizing their thickness values and doping concentrations, the final theoretical photovoltaic conversion efficiency of the double perovskite solar cell with an HTL of Cu2O can reach 22.85%, which is increased by 25.6% compared with the currently reported theoretical efficiency value. Moreover, the optimal efficiency is achieved when the metal electrode work function is less than –4.9 eV. This work will help find suitable materials for the transport layer and provide guidance for developing the high-performance and lead-free perovskite solar cells.
      Corresponding author: Tian Han-Min, tianhanmin@hebut.edu.cn
    [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    Tong J, Song Z, Kim D H, Chen X, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G 2019 Science 364 475Google Scholar

    [3]

    Alarousu E, El-Zohry A M, Yin J, Zhumekenov A A, Yang C, Alhabshi E, Gereige I, AlSaggaf A, Malko A V, Bakr O M, Mohammed O F 2017 J. Phys. Chem. Lett. 8 4386Google Scholar

    [4]

    Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967Google Scholar

    [5]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [6]

    Zhang Z, Yang G, Zhou C, Chung C C, Hany I 2019 RSC Adv. 9 23459Google Scholar

    [7]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar

    [8]

    Hutter E M, Gélvez-Rueda M C, Bartesaghi D, Grozema F C, Savenije T 2018 ACS Omega 3 11655Google Scholar

    [9]

    Du K Z, Meng W, Wang X, Yan Y, Mitzi D B 2017 Angew. Chem. Int. Ed. 56 8158Google Scholar

    [10]

    Pantaler M, Cho K T, Queloz V I E, Benito I G, Fettkenhauer C, Anusca I, Nazeeruddin M K, Lupascu D C, Grancini G 2018 ACS Energy Lett. 3 1781Google Scholar

    [11]

    Gao W, Ran C, Xi J, Jiao B, Zhang W, Wu M, Hou X, Wu Z 2018 Chemphyschemistry 19 1696Google Scholar

    [12]

    Liu Y, Zhang L, Wang M, Zhong Y J, Huang M R, Long Y, Zhu H W 2019 Mater. Today 28 25Google Scholar

    [13]

    Madan J, Pandey R, Sharma R 2020 Sol. Energy 197 212Google Scholar

    [14]

    Singh N, Agarwal A, Agarwal M 2021 Opt. Mater. 114 110964Google Scholar

    [15]

    Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J, Hao Y 2018 Sol. Energy 169 11Google Scholar

    [16]

    Kanoun A A, Kanoun M B, Merad A E, Goumri-Said S 2019 Sol. Energy 182 237Google Scholar

    [17]

    Jalalian D, Ghadimi A, Kiani A 2019 Eur. Phys. J. 87 10101Google Scholar

    [18]

    Rahman S I, Faisal S, Ahmed S, Dhrubo T I 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) Bengaluru, India, 30 September–2 October, 2017 pp546–550

    [19]

    Gan Y J, Bi X G, Liu Y C, Qin B Y, Li Q L, Jiang Q B, Mo P 2020 Energies 13 5907Google Scholar

    [20]

    Minemoto T, Murata M 2015 Sol. Energy Mater Sol. Cells 133 8Google Scholar

    [21]

    Ahmed S, Jannat F, Alim M A 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT) Dhaka, Bangladesh, November 21, 2020 pp297–301

    [22]

    Minemoto T, Julayhi J 2013 Curr. Appl. Phys. 13 103Google Scholar

    [23]

    Ahmed A, Riaz K, Mehmood H, Tauqeer T, Ahmad Z 2020 Opt. Mater. 105 109897Google Scholar

    [24]

    Haider S Z, Anwar H, Jamil Y, Shahid M 2020 J. Phys. Chem. Solids 136 109147Google Scholar

    [25]

    Ding C, Zhang Y H, Liu F, Kitabatake Y, Hayase S, Toyoda T, Yoshino K, Minemoto T, Katayama K, Shen Q 2018 Nano Energy 53 17Google Scholar

    [26]

    Aouaj M A, Diaz R, Belayachi A, Rueda F, Abd-Lefdil M 2009 Mater. Res. Bull. 44 1458Google Scholar

    [27]

    Way A, Luke J, Evans A D, Li Z, Kim J-S, Durrant J R, Hin Lee H K, Tsoi W C 2019 AIP Adv. 9 085220Google Scholar

    [28]

    Huang L J, Ren N F, Li B J, Zhou M 2014 Mater. Lett. 116 405Google Scholar

    [29]

    Liu J, Cao W Q, Jin H B, Yuan J, Zhang D Q, Cao M S 2015 J. Mater. Chem. C 3 4670Google Scholar

    [30]

    Pantaler M, Olthof S, Meerholz K, Lupascu D C 2019 MRS Adv. 4 3545Google Scholar

    [31]

    Dai Z, Zheng D, Chen J, Yang B 2021 Chem. Phys. Lett. 770 138440Google Scholar

    [32]

    Almosni S, Cojocaru L, Li D, Uchida S, Kubo T, Segawa H 2017 Energy Technol. 5 1767Google Scholar

    [33]

    Govindaraj G, Baskaran N, Shahi K, Monoravi P 1995 Solid State Ion 76 47Google Scholar

    [34]

    Collaboration: Authors and editors of the volumes III/17E-17F-41C. Non-Tetrahedrally Bonded Elements and Binary Compounds I 1998 1

    [35]

    Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G 2010 J. Phys. Chem. C 114 9111Google Scholar

    [36]

    Zhang Q, Dandeneau C S, Zhou X, Cao G 2009 Adv. Mater. 21 4087Google Scholar

    [37]

    Gloeckler M 2005 Ph. D. Dissertation (Fort collins, Colorado: Colorado State University

    [38]

    Eom K, Kwon U, Kalanur S S, Park H J, Seo H 2017 J. Mater. Chem. A 5 2563Google Scholar

    [39]

    Chang J H, Shen S Y, Dong C D, Shkir M, Kumar M 2022 Chemosphere 287 131960Google Scholar

    [40]

    Wang Y, Lany S, Ghanbaja J, Fagot-Revurat Y, Chen Y, Soldera F, Horwat D, Mücklich F, Pierson J 2016 Phys. Rev. B 94 245418Google Scholar

    [41]

    Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, Lin Y H, Faber H, Pattanasattayavong P, Li J, Yan F 2017 Adv. Funct. Mater. 27 1701818Google Scholar

    [42]

    Takahashi R, Dazai T, Tsukahara Y, Borowiak A, Koinuma H 2022 J. Appl. Phys. 131 175302Google Scholar

    [43]

    Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Metals 8 667Google Scholar

    [44]

    Rudnyi E B, Vovk O M, Kaibicheva E A, Sidorov L N 1989 J. Chem. Thermodyn. 21 247Google Scholar

    [45]

    Brandt R E, Young M, Park H H, Dameron A, Chua D, Lee Y S, Teeter G, Gordon R G, Buonassisi T 2014 Appl. Phys. Lett. 105 26Google Scholar

    [46]

    Gavrilov S, Zheleznyakova A, Dronov A, Dittrich T 2009 Physics, Chemistry And Application Of Nanostructures: Reviews and Short Notes (World Scientific) pp577–580

    [47]

    Bag A, Radhakrishnan R, Nekovei R, Jeyakumar R 2020 Sol. Energy 196 177Google Scholar

    [48]

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802 [周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 71 208802Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [49]

    Zhao P, Lin Z H, Wang J P, Yue M, Su J, Zhang J C, Chang J J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar

    [50]

    王家平2021 硕士学位论文 (西安: 西安电子科技大学)

    Wang J P 2021 M. S. Thesis (Xi'an: Xidian University

    [51]

    Tanaka K, Minemoto T, Takakura H J S E 2009 Sol. Energy 83 477Google Scholar

    [52]

    Saeed M A, Kim S H, Baek K, Hyun J K, Lee S Y, Shim J W 2021 Appl. Surf. Sci. 567 150852Google Scholar

    [53]

    Kim S M, Saeed M A, Kim S H, Shim J W 2020 Appl. Surf. Sci. 527 146840Google Scholar

    [54]

    许李毅飞2022 硕士学位论文 (成都: 电子科技大学)

    Xu L Y F 2022 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [55]

    Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren-Cruz S-H, Seo J, Luo J, Zakeeruddin S M, Tress W R J A E L 2018 ACS Energy Lett. 3 773Google Scholar

    [56]

    Huang X, Du J, Guo X, Lin Z, Ma J, Su J, Feng L, Zhang C, Zhang J, Chang J J S R 2020 Sol. RRL 4 1900336Google Scholar

    [57]

    Parajuli D, Shah D K, KC D, Kumar S, Park M, Pant B J E 2022 Electrochemistry 3 407Google Scholar

    [58]

    Islam M A, Abou Hashish M D, Hatta S M, Soin N B, Khan S, Amin N IOP Conference Series: Materials Science and Engineering p012005

  • 图 1  模拟双钙钛矿太阳能电池的二维结构图

    Figure 1.  Two-dimensional structure diagram of simulated double perovskite solar cell.

    图 2  器件性能随Cs2AgBi0.75Sb0.25Br6厚度的变化

    Figure 2.  Variation of device performance with different thickness of Cs2AgBi0.75Sb0.25Br6.

    图 3  导带偏移量为(a)负值与(b)正值时的能带排列图; 价带偏移量为(c)负值与(d)正值时的能带排列图

    Figure 3.  Energy band alignment diagram with (a) negative and (b) positive CBO; energy band alignment diagram with (c) negative and (d) positive VBO.

    图 4  不同(a)导带偏移量和(b)价带偏移量下Cs2AgBi0.75Sb0.25Br6太阳能电池器件性能变化

    Figure 4.  Variation of device performance of Cs2AgBi0.75Sb0.25Br6 solar cells with different (a) CBOs and (b) VBOs.

    图 5  Cs2AgBi0.75Sb0.25Br6太阳能电池的不同 (a)负值导带偏移量, (b)正值导带偏移量, (d)负值价带偏移量, (e)正值价带偏移量的能带图; 不同(c)负值导带偏移量和(f)负值价带偏移量下界面缺陷层的载流子复合速率

    Figure 5.  Energy band diagrams of Cs2AgBi0.75Sb0.25Br6 solar cells with different (a) negative CBOs, (b) positive CBOs, (d) negative VBOs, (e) positive VBOs; carrier recombination rate in interfacial defect layers with different (c) negative CBOs and (f) negative VBOs.

    图 6  不同 (a) ZnOS厚度, (b) HTL厚度, (c) ZnOS掺杂浓度, (d) HTL掺杂浓度下Cs2AgBi0.75Sb0.25Br6太阳能电池的器件性能

    Figure 6.  Device performance of Cs2AgBi0.75Sb0.25Br6 solar cell with different (a) thickness of ZnOS, (b) thickness of HTL, (c) doping concentration of ZnOS, (d) doping concentration of HTL.

    图 7  不同HTL的Cs2AgBi0.75Sb0.25Br6太阳能电池的(a) J-V曲线图和输出参数, (b)能带图

    Figure 7.  (a) J-V curves and output parameters, (b) energy band diagrams of Cs2AgBi0.75Sb0.25Br6 solar cells with different HTL.

    图 8  Cs2AgBi0.75Sb0.25Br6太阳能电池的能带图随Cu2O掺杂浓度变化

    Figure 8.  Variation of energy band diagrams of Cs2AgBi0.75Sb0.25Br6 solar cells with the doping concentration of Cu2O.

    图 9  不同功函数对Cs2AgBi0.75Sb0.25Br6太阳能电池性能的影响

    Figure 9.  Effect of different work functions on the performance of Cs2AgBi0.75Sb0.25Br6 solar cells.

    图 10  (a)不同金属功函数下的器件能带图; 钙钛矿层的(b)电子浓度和(c)空穴浓度随不同金属功函数的变化

    Figure 10.  (a) Device energy band diagrams with different metal work functions; variation of (b) electron concentration and (c) hole concentration in perovskite layer with different metal work functions.

    表 1  Cs2AgBi0.75Sb0.25Br6太阳能电池各层材料的参数

    Table 1.  Parameters of each layer material of Cs2AgBi0.75Sb0.25Br6 solar cell.

    ParameterZnOZnOSCs2AgBi0.75Sb0.25Br6Spiro-OMeTADMoO3Cu2OCuSCN
    Permittivity, εr9[29]9[18]6.5[30,31]3[32]12.5[33]7.1[34]10[35]
    Band gap/eV3.3[36]2.83[37]1.8[8]3[38]3[39]2.17[40]3.4[41]
    Affinity/eV4[42]3.6[37]3.58[43]2.45[32]2.5[44]3.2[45]1.9[46]
    NC/cm–33.7×10182.2×10182.2×10182.2×10182.2×10182.02×10172.2×1018
    NV/cm–31.8×10191.8×10191.8×10191.8×10191.8×10191.1×10191.8×1019
    ND/cm–31×10171×10171.0×10130000
    NA/cm–3001.0×10171×10181×10181×10191×1019
    μn/(cm2·V–1·S–1)10010022×10–425200100
    μp/(cm2·V–1·S–1)252522×10–41008025
    DownLoad: CSV

    表 2  优化的器件光伏性能参数及参考

    Table 2.  Optimized device photovoltaic performance parameters and references.

    Thickness/nm Doping
    concentration/cm–3
    VOC/V JSC/(mA·cm–2) PCE/% FF/%
    This work ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
    70/400/350
    ETL/HTL: 2×1018/9×1021 1.36 14.12 16.87 88.04
    After thickness optimization ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
    30/500/280
    ETL/HTL: 2×1018/9×1021 1.36 15.70 18.56 87.24
    After ND(ZnOS) optimization ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
    30/500/280
    ETL/HTL: 1×1020/9×1021 1.35 15.70 18.62 87.37
    After NA(Cu2O) optimization ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
    30/500/280
    ETL/HTL: 1×1020/1×1017 1.35 19.49 22.85 86.76
    Ref.[14] ZnOS/Cs2AgBi0.75Sb0.25Br6/Cu2O:
    70/400/350
    ETL/HTL: 2×1018/9×1021 1.39 16.04 18.18 78.34
    Other Ref.[58] ZnO/Cs2AgBi0.75Sb0.25Br6/NiO:
    70/400/350
    ETL/HTL: 5×1017/3×1018 1.23 15.57 17.13 89.39
    Other Ref.[13] NiO/Cs2AgBi0.75Sb0.25Br6/PCBM/
    SnO2: 40/500/40/6
    ETL/HTL: 1×1015/5×1017 1.14 14.9 10.01 58.70
    DownLoad: CSV
    Baidu
  • [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    Tong J, Song Z, Kim D H, Chen X, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G 2019 Science 364 475Google Scholar

    [3]

    Alarousu E, El-Zohry A M, Yin J, Zhumekenov A A, Yang C, Alhabshi E, Gereige I, AlSaggaf A, Malko A V, Bakr O M, Mohammed O F 2017 J. Phys. Chem. Lett. 8 4386Google Scholar

    [4]

    Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967Google Scholar

    [5]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [6]

    Zhang Z, Yang G, Zhou C, Chung C C, Hany I 2019 RSC Adv. 9 23459Google Scholar

    [7]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar

    [8]

    Hutter E M, Gélvez-Rueda M C, Bartesaghi D, Grozema F C, Savenije T 2018 ACS Omega 3 11655Google Scholar

    [9]

    Du K Z, Meng W, Wang X, Yan Y, Mitzi D B 2017 Angew. Chem. Int. Ed. 56 8158Google Scholar

    [10]

    Pantaler M, Cho K T, Queloz V I E, Benito I G, Fettkenhauer C, Anusca I, Nazeeruddin M K, Lupascu D C, Grancini G 2018 ACS Energy Lett. 3 1781Google Scholar

    [11]

    Gao W, Ran C, Xi J, Jiao B, Zhang W, Wu M, Hou X, Wu Z 2018 Chemphyschemistry 19 1696Google Scholar

    [12]

    Liu Y, Zhang L, Wang M, Zhong Y J, Huang M R, Long Y, Zhu H W 2019 Mater. Today 28 25Google Scholar

    [13]

    Madan J, Pandey R, Sharma R 2020 Sol. Energy 197 212Google Scholar

    [14]

    Singh N, Agarwal A, Agarwal M 2021 Opt. Mater. 114 110964Google Scholar

    [15]

    Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J, Hao Y 2018 Sol. Energy 169 11Google Scholar

    [16]

    Kanoun A A, Kanoun M B, Merad A E, Goumri-Said S 2019 Sol. Energy 182 237Google Scholar

    [17]

    Jalalian D, Ghadimi A, Kiani A 2019 Eur. Phys. J. 87 10101Google Scholar

    [18]

    Rahman S I, Faisal S, Ahmed S, Dhrubo T I 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) Bengaluru, India, 30 September–2 October, 2017 pp546–550

    [19]

    Gan Y J, Bi X G, Liu Y C, Qin B Y, Li Q L, Jiang Q B, Mo P 2020 Energies 13 5907Google Scholar

    [20]

    Minemoto T, Murata M 2015 Sol. Energy Mater Sol. Cells 133 8Google Scholar

    [21]

    Ahmed S, Jannat F, Alim M A 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT) Dhaka, Bangladesh, November 21, 2020 pp297–301

    [22]

    Minemoto T, Julayhi J 2013 Curr. Appl. Phys. 13 103Google Scholar

    [23]

    Ahmed A, Riaz K, Mehmood H, Tauqeer T, Ahmad Z 2020 Opt. Mater. 105 109897Google Scholar

    [24]

    Haider S Z, Anwar H, Jamil Y, Shahid M 2020 J. Phys. Chem. Solids 136 109147Google Scholar

    [25]

    Ding C, Zhang Y H, Liu F, Kitabatake Y, Hayase S, Toyoda T, Yoshino K, Minemoto T, Katayama K, Shen Q 2018 Nano Energy 53 17Google Scholar

    [26]

    Aouaj M A, Diaz R, Belayachi A, Rueda F, Abd-Lefdil M 2009 Mater. Res. Bull. 44 1458Google Scholar

    [27]

    Way A, Luke J, Evans A D, Li Z, Kim J-S, Durrant J R, Hin Lee H K, Tsoi W C 2019 AIP Adv. 9 085220Google Scholar

    [28]

    Huang L J, Ren N F, Li B J, Zhou M 2014 Mater. Lett. 116 405Google Scholar

    [29]

    Liu J, Cao W Q, Jin H B, Yuan J, Zhang D Q, Cao M S 2015 J. Mater. Chem. C 3 4670Google Scholar

    [30]

    Pantaler M, Olthof S, Meerholz K, Lupascu D C 2019 MRS Adv. 4 3545Google Scholar

    [31]

    Dai Z, Zheng D, Chen J, Yang B 2021 Chem. Phys. Lett. 770 138440Google Scholar

    [32]

    Almosni S, Cojocaru L, Li D, Uchida S, Kubo T, Segawa H 2017 Energy Technol. 5 1767Google Scholar

    [33]

    Govindaraj G, Baskaran N, Shahi K, Monoravi P 1995 Solid State Ion 76 47Google Scholar

    [34]

    Collaboration: Authors and editors of the volumes III/17E-17F-41C. Non-Tetrahedrally Bonded Elements and Binary Compounds I 1998 1

    [35]

    Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G 2010 J. Phys. Chem. C 114 9111Google Scholar

    [36]

    Zhang Q, Dandeneau C S, Zhou X, Cao G 2009 Adv. Mater. 21 4087Google Scholar

    [37]

    Gloeckler M 2005 Ph. D. Dissertation (Fort collins, Colorado: Colorado State University

    [38]

    Eom K, Kwon U, Kalanur S S, Park H J, Seo H 2017 J. Mater. Chem. A 5 2563Google Scholar

    [39]

    Chang J H, Shen S Y, Dong C D, Shkir M, Kumar M 2022 Chemosphere 287 131960Google Scholar

    [40]

    Wang Y, Lany S, Ghanbaja J, Fagot-Revurat Y, Chen Y, Soldera F, Horwat D, Mücklich F, Pierson J 2016 Phys. Rev. B 94 245418Google Scholar

    [41]

    Wijeyasinghe N, Regoutz A, Eisner F, Du T, Tsetseris L, Lin Y H, Faber H, Pattanasattayavong P, Li J, Yan F 2017 Adv. Funct. Mater. 27 1701818Google Scholar

    [42]

    Takahashi R, Dazai T, Tsukahara Y, Borowiak A, Koinuma H 2022 J. Appl. Phys. 131 175302Google Scholar

    [43]

    Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Metals 8 667Google Scholar

    [44]

    Rudnyi E B, Vovk O M, Kaibicheva E A, Sidorov L N 1989 J. Chem. Thermodyn. 21 247Google Scholar

    [45]

    Brandt R E, Young M, Park H H, Dameron A, Chua D, Lee Y S, Teeter G, Gordon R G, Buonassisi T 2014 Appl. Phys. Lett. 105 26Google Scholar

    [46]

    Gavrilov S, Zheleznyakova A, Dronov A, Dittrich T 2009 Physics, Chemistry And Application Of Nanostructures: Reviews and Short Notes (World Scientific) pp577–580

    [47]

    Bag A, Radhakrishnan R, Nekovei R, Jeyakumar R 2020 Sol. Energy 196 177Google Scholar

    [48]

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802 [周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 71 208802Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [49]

    Zhao P, Lin Z H, Wang J P, Yue M, Su J, Zhang J C, Chang J J, Hao Y 2019 ACS Appl. Energy Mater. 2 4504Google Scholar

    [50]

    王家平2021 硕士学位论文 (西安: 西安电子科技大学)

    Wang J P 2021 M. S. Thesis (Xi'an: Xidian University

    [51]

    Tanaka K, Minemoto T, Takakura H J S E 2009 Sol. Energy 83 477Google Scholar

    [52]

    Saeed M A, Kim S H, Baek K, Hyun J K, Lee S Y, Shim J W 2021 Appl. Surf. Sci. 567 150852Google Scholar

    [53]

    Kim S M, Saeed M A, Kim S H, Shim J W 2020 Appl. Surf. Sci. 527 146840Google Scholar

    [54]

    许李毅飞2022 硕士学位论文 (成都: 电子科技大学)

    Xu L Y F 2022 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [55]

    Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren-Cruz S-H, Seo J, Luo J, Zakeeruddin S M, Tress W R J A E L 2018 ACS Energy Lett. 3 773Google Scholar

    [56]

    Huang X, Du J, Guo X, Lin Z, Ma J, Su J, Feng L, Zhang C, Zhang J, Chang J J S R 2020 Sol. RRL 4 1900336Google Scholar

    [57]

    Parajuli D, Shah D K, KC D, Kumar S, Park M, Pant B J E 2022 Electrochemistry 3 407Google Scholar

    [58]

    Islam M A, Abou Hashish M D, Hatta S M, Soin N B, Khan S, Amin N IOP Conference Series: Materials Science and Engineering p012005

  • [1] Yao Mei-Ling, Liao Ji-Xing, Lu Hao-Feng, Huang Qiang, Cui Yan-Feng, Li Xiang, Yang Xue-Ying, Bai Yang. Key issues and solutions affecting efficiency and stability of perovskite/heterojunction tandem solar cells. Acta Physica Sinica, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [2] Xiong Xiang-Jie, Zhong Fang, Zhang Zi-Wen, Chen Fang, Luo Jing-Lan, Zhao Yu-Qing, Zhu Hui-Ping, Jiang Shao-Long. Photovoltaic properties of two-dimensional van der Waals heterostructure Cs3X2I9/InSe (X = Bi, Sb). Acta Physica Sinica, 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [3] Fang Zheng, Zhang Fei, Qin Xiao-Jun, Yang Liu, Jin Yong-Bin, Zhou Yang-Ying, Wang Xing-Tao, Liu Yun, Xie Li-Qiang, Wei Zhan-Hua. Four-terminal perovskite/silicon series solar cells with 28% efficiency achieved by suppressing edge recombination. Acta Physica Sinica, 2023, 72(5): 057302. doi: 10.7498/aps.72.20222209
    [4] Zhang Mei-Rong, Zhu Zeng-Wei, Yang Xiao-Qin, Yu Tong-Xu, Yu Xiao-Qi, Lu Di, Li Shun-Feng, Zhou Da-Yong, Yang Hui. Research progress of perovskite/crystalline silicon tandem solar cells with efficiency of over 30%. Acta Physica Sinica, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [5] Li Xue-Rui, Lin Jun-Hui, Tang Rong, Zheng Zhuang-Hao, Su Zheng-Hua, Chen Shuo, Fan Ping, Liang Guang-Xing. Back contact optimization for Sb2Se3 solar cells. Acta Physica Sinica, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [6] Wang Gui-Qiang, Bi Jia-Yu, Liu Jie-Qiong, Lei Miao, Zhang Wei. Enhancing quality of CsPbIBr2 inorganic perovskite via cellulose acetate addition for high-performance perovskite solar cells. Acta Physica Sinica, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [7] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [8] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [9] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [10] Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li. Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties. Acta Physica Sinica, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [11] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [12] Chen Zhuo,  Fang Lei,  Chen Yuan-Fu. Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite. Acta Physica Sinica, 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [13] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [14] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [15] Wang Peng, Guo Run-Da, Chen Yu, Yue Shou-Zhen, Zhao Yi, Liu Shi-Yong. Influence of gradient doping on photoelectric conversion efficiency of organic photovoltaic devices. Acta Physica Sinica, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [16] Geng Jun-Jie, Zhang Jun, Zhang Yi, Ding Jian-Jun, Sun Song, Luo Zhen-Lin, Bao Jun, Gao Chen. Simulation and optimization of the cascaded luminescent solar concentrator photovoltaic system. Acta Physica Sinica, 2012, 61(3): 034201. doi: 10.7498/aps.61.034201
    [17] Wang Jian-Jun, Fang Ze-Bo, Ji Ting, Zhu Yan-Yan, Ren Wei-Yi, Zhang Zhi-Jiao. Band shifts of Tm2O3 films epitaxially grown on Si substrates. Acta Physica Sinica, 2012, 61(1): 017702. doi: 10.7498/aps.61.017702
    [18] Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai, Kou Dong-Xing, Jiang Nian-Quan. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [19] BAN DA-YAN, FANG RONG-CHUAN, XUE JIAN-GENG, LU ER-DONG, XU SHI-HONG, XU PENG-SHOU. VALENCE BAND OFFSETS OF Si/ZnS POLAR INTERFACES: A SYNCHROTRON RADIATION PHOTOEMISSION STUDY. Acta Physica Sinica, 1997, 46(9): 1817-1825. doi: 10.7498/aps.46.1817
    [20] BAN DA-YAN, FANG RONG-CHUAN, YANG FENG-YUAN, XU SHI-HONG, XU PENG-SHOU, YUAN SHI-XIN. VALENCE BAND OFFSETS OF Ge/ZnSe(100) STUDIED BY SYNCHROTRON RADIATION PHOTOEMISSION. Acta Physica Sinica, 1997, 46(3): 587-595. doi: 10.7498/aps.46.587
Metrics
  • Abstract views:  2003
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  09 August 2023
  • Accepted Date:  01 October 2023
  • Available Online:  25 December 2023
  • Published Online:  20 January 2024

/

返回文章
返回
Baidu
map