Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rotation manipulation of single-molecule magnetic trapping and gene transcription regulation dynamics

Zhang Zhi-Peng Liu Shuai Zhang Yu-Qiong Xiong Ying Han Wei-Jing Chen Tong-Sheng Wang Shuang

Citation:

Rotation manipulation of single-molecule magnetic trapping and gene transcription regulation dynamics

Zhang Zhi-Peng, Liu Shuai, Zhang Yu-Qiong, Xiong Ying, Han Wei-Jing, Chen Tong-Sheng, Wang Shuang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Gene transcription regulation is a key step for gene expression in all organisms and responsible for the transmission of genetic information and genome integrity. As one of the most important mechanisms in gene transcription, an RNA polymerase (RNAP) specifically interacts with and unwinds genome DNA to form a transcription bubble where a nascent RNA transcript is polymerized, taking one of the unwound DNA strands as its template. The RNAP translocates along the DNA to transcribe the whole gene by carrying the transcription bubble. In such a way, an RNAP completes its biological task of gene expression by physically acting as a molecular machinery. Thus, an RNAP molecule can be considered as a research object for physicists who are willing to uncover the mechanisms of life processes in a physical view. To achieve this, single-molecule method has been invented and used widely. As one of these methods, single-molecule magnetic trapping manipulates biological molecules by applying extension force or torque to the magnetic beads tethered through biological molecule to pre-coated glass surfaces by manipulating the position or rotation of a pair of magnets. A linear DNA molecule can be manipulated in such a way to generate plectonemes, i.e. DNA supercoils, under an extension force of 0.3 pN (1 pN = 10–12 N), possessing the feature that the number of unwound base pairs of a supercoiled DNA can be observed by the changes in the number of supercoils reflected by the DNA extension changes. Thus, the DNA unwound by RNAP, i.e. the transcription bubble, during transcription can be observed in this way. By monitoring the kinetics of the transcription bubble in real time, this method thus allows single-molecule detection with single-base resolution and a high-throughput data collection fashion in the kinetic studies of transcription. Owing to the advantages of the manipulation of DNA supercoils with single-molecule magnetic trapping, one can mimic the mechanistic feature of DNAs in vivo and characterize the kinetics of transcription under such conditions. This method can also be combined with single-molecule fluorescence method which can be applied to studying the mechanism of transcription regulation while monitoring the behaviors of fluorescently labeled biological molecules that interact with functional RNAP molecules, providing examples for studying the mechanisms of transcription regulations in more complex systems.
      Corresponding author: Wang Shuang, shuangwang@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004420, 32071228, 12004271, 12274308, 62135003), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences, China (Grant No. XDB37000000), the Youth Innovation Promotion Association of Chinese Academy of Sciences, China (Grant No. 2021009), the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 21202107221900001, 2022B0303040003), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2019A1515110186).
    [1]

    Watson J D, Crick F H C 1953 Nature 171 737Google Scholar

    [2]

    Watson J D, Crick F H C 1953 Nature 171 964Google Scholar

    [3]

    Crick F 1970 Nature 227 561Google Scholar

    [4]

    Monod J, Changeux J P, Jacob F 1963 J. Mol. Biol. 6 306Google Scholar

    [5]

    Monod J, Wyman J, Changeux J P 1965 J. Mol. Biol. 12 88Google Scholar

    [6]

    Zhang G, Campbell E A, Minakhin L, Richter C, Severinov K, Darst S A 1999 Cell 98 811Google Scholar

    [7]

    Gnatt A L, Cramer P, Fu J, Bushnell D A, Kornberg R D 2001 Science 292 1876Google Scholar

    [8]

    Chen X, Yin X, Li J, Wu Z, Qi Y, Wang X, Liu W, Xu Y 2021 Science 372 eabg0635Google Scholar

    [9]

    Chen X, Qi Y, Wu Z, et al. 2021 Science 372 eaba8490Google Scholar

    [10]

    Huang K, Wu X X, Fang C L, et al. 2021 Science 374 1579Google Scholar

    [11]

    Komissarova N, Becker J, Solter S, Kireeva M, Kashlev M 2002 Mol. Cell 10 1151Google Scholar

    [12]

    Skourti-Stathaki K, Proudfoot N J, Gromak N 2011 Mol. Cell 42 794Google Scholar

    [13]

    Hazelbaker D Z, Marquardt S, Wlotzka W, Buratowski S 2013 Mol. Cell 49 55Google Scholar

    [14]

    Kim S, Beltran B, Irnov I, Jacobs-Wagner C 2019 Cell 179 106Google Scholar

    [15]

    Abbondanzieri E A, Greenleaf W J, Shaevitz J W, Landick R, Block S M 2005 Nature 438 460Google Scholar

    [16]

    Chakraborty A, Wang D, Ebright Y W, et al. 2012 Science 337 591Google Scholar

    [17]

    Howan K, Smith A J, Westblade L F, Joly N, Grange W, Zorman S, Darst S A, Savery N J, Strick T R 2012 Nature 490 431Google Scholar

    [18]

    Ma J, Bai L, Wang M D 2013 Science 340 1580Google Scholar

    [19]

    Koh H R, Roy R, Sorokina M, Tang G Q, Nandakumar D, Patel S S, Ha T 2018 Mol. Cell 70 695Google Scholar

    [20]

    Rosen G A, Baek I, Friedman L J, Joo Y J, Buratowski S, Gelles J 2020 Proc. Natl. Acad. Sci. 117 32348Google Scholar

    [21]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491Google Scholar

    [22]

    Roy R, Hohng S, Ha T J 2008 Nat. Methods 5 507Google Scholar

    [23]

    Gosse C, Croquette V 2002 Biophys. J. 82 3314Google Scholar

    [24]

    Cnossen J P, Dulin D, Dekker N H 2014 Rev. Sci. Instrum. 85 103712Google Scholar

    [25]

    Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S, Otto O, Keyser U F, Seidel R 2015 Nat. Commun. 6 5885Google Scholar

    [26]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar

    [27]

    Ashkin A, Dziedzic J M 1987 Science 235 1517Google Scholar

    [28]

    Neuman K C, Block S M 2004 Rev. Sci. Instrum. 75 2787Google Scholar

    [29]

    Rief M, Gautel M, Oesterhelt F, Femandez J M, Gaub H E 1997 Science 276 1109Google Scholar

    [30]

    Yu H, Siewny M G W, Edwards D T, Sanders A W, Perkins T T 2017 Science 355 945Google Scholar

    [31]

    Jiao F, Cannon K S, Lin Y C, Gladfelter A S, Scheuring S 2020 Nat. Commu. 11 5062Google Scholar

    [32]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. 93 6264Google Scholar

    [33]

    Weiss S 1999 Science 283 1676Google Scholar

    [34]

    Lerner E, Cordes T, Ingargiola A, Alhadid Y, Chung S, Michalet X, Weiss S 2018 Science 359 eaan1133Google Scholar

    [35]

    Friedman L J, Chung J, Gelles J 2006 Biophys. J. 91 1023Google Scholar

    [36]

    Friedman L J, Gelles J 2015 Methods 86 27Google Scholar

    [37]

    Thompson M A, Lew M D, Moerner W 2012 Annu. Rev. Bioph. Biom. 41 321Google Scholar

    [38]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [39]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749Google Scholar

    [40]

    Seol Y, Neuman K C 2017 Combined Magnetic Tweezers, Micro-mirror Total Internal Reflection Fluorescence Microscope for Single-molecule Manipulation and Visualization Single Molecule Analysis (New York: Springer) pp297–316

    [41]

    Fan J, Leroux-Coyau M, Savery N J, Strick T R 2016 Nature 536 234Google Scholar

    [42]

    Comstock M J, Whitley K D, Jia H, Sokoloski J, Lohman T M, Ha T, Chemla Y R 2015 Science 348 352Google Scholar

    [43]

    Lionnet T, Allemand J F, Revyakin A, Strick T R, Saleh O A, Bensimon D, Croquette V 2011 Cold Spring Harb. Protoc. 2012 133Google Scholar

    [44]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122Google Scholar

    [45]

    Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835Google Scholar

    [46]

    Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540Google Scholar

    [47]

    Guo Z, Hong H, Yuan G, Qian H, Li B, Cao Y, Wang W, Wu C X, Chen H 2020 Phys. Rev. Lett. 125 198101Google Scholar

    [48]

    Strick T, Allemand J F, Bensimon D, Croquette V 1998 Biophys. J. 74 2016Google Scholar

    [49]

    Revyakin A, Ebright R H, Strick T R 2004 Proc. Natl. Acad. Sci. U. S. A. 101 4776Google Scholar

    [50]

    Revyakin A, Ebright R H, Strick T R 2005 Nat. Methods 2 127Google Scholar

    [51]

    Yu L, Winkelman J T, Pukhrambam C, Strick T R, Nickels B E, Ebright R H 2017 eLife 6 e32038Google Scholar

    [52]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795Google Scholar

    [53]

    Roeder R G 2019 Nat Struct. Mol. Biol. 26 783Google Scholar

    [54]

    Pomerantz R T, O’Donnell M 2010 Science 327 590Google Scholar

    [55]

    Merrikh H, Machón C, Grainger W H, Grossman A D, Soultanas P 2011 Nature 470 554Google Scholar

    [56]

    Tomko E J, Fishburn J, Hahn S, Galburt E A 2017 Nat Struct. Mol. Biol. 24 1139Google Scholar

    [57]

    Revyakin A, Liu C, Ebright R H, Strick T R 2006 Science 314 1139Google Scholar

    [58]

    Kapanidis A N, Margeat E, Ho S O, Kortkhonjia E, Weiss S, Ebright R H 2006 Science 314 1144Google Scholar

    [59]

    Lerner E, Chung S, Allen B L, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 6562Google Scholar

    [60]

    Wang D, Bushnell D A, Huang X, Westover K D, Levitt M, Kornberg R D 2009 Science 324 1203Google Scholar

    [61]

    Zhang Y, Han W, Wang L, Wang H, Jia Q, Chen T, Wang S, Li M 2023 J. Phys. Chem. B 127 2909Google Scholar

    [62]

    Zhu C, Guo X, Dumas P, Takacs M, Abdelkareem M, Broeck A V, Saint-André C, Papai G, Crucifix C, Ortiz J, Weixlbaumer A 2022 Nat. Commun. 13 1546Google Scholar

    [63]

    Ray-Soni A, Bellecourt M J, Landick R 2016 Annu. Rev. Biochem. 85 319Google Scholar

    [64]

    Kim M, Vasiljeva L, Rando O J, Zhelkovsky A, Moore C, Buratowski S 2006 Mol. Cell 24 723Google Scholar

    [65]

    Arndt K M, Reines D 2015 Annu. Rev. Biochem. 84 381Google Scholar

    [66]

    Fazal F M, Meng C A, Murakami K, Kornberg R D, Block S M 2015 Nature 525 274Google Scholar

    [67]

    Wang S, Han Z, Libri D, Porrua O, Strick T R 2019 Nat. Commun. 10 1545Google Scholar

    [68]

    Klein H L, Ang K K, Arkin M R, et al. 2019 Microbial. Cell 6 65Google Scholar

    [69]

    王爽, 郑海子, 赵振业, 陆越, 徐春华 2013 62 168703Google Scholar

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703Google Scholar

    [70]

    Graves E T, Duboc C, Fan J, Stransky F, Leroux-Coyau M, Strick T R 2015 Nat. Struct. Mol. Biol. 22 452Google Scholar

  • 图 1  单分子磁镊操控技术示意图

    Figure 1.  Schematic for single-molecule magnetic trap.

    图 2  单分子磁镊旋转操控DNA超螺旋

    Figure 2.  Manipulation of DNA supercoils via single-molecule magnetic trap.

    图 3  单分子磁镊旋转操控方法研究转录动力学 (a) 研究方法示意图; (b) 典型转录曲线(起始(RPitc)、延伸(RDe)和终止)

    Figure 3.  Transcription kinetics characterized via single-molecule magnetic trap: (a) Schematic of the methodology; (b) a typical transcription trajectory showing initiation (RPitc), elongation (RDe) and termination.

    图 4  单分子磁镊操控技术和单分子荧光成像技术联用方案 (a)方案示意图; (b)磁镊监测转录动力学过程; (c)单分子荧光方法同步观测RNAP、Mfd和RNA的时空分布[68]

    Figure 4.  Schematic for combination of single-molecule magnetic trap and single-molecule fluorescence imaging: (a) Schematic of the assay; (b) transcription kinetics characterized via single-molecule magnetic trap; (c) simultaneous detection of RNAP, Mfd and RNA via single-molecule fluorescence assay[68].

    Baidu
  • [1]

    Watson J D, Crick F H C 1953 Nature 171 737Google Scholar

    [2]

    Watson J D, Crick F H C 1953 Nature 171 964Google Scholar

    [3]

    Crick F 1970 Nature 227 561Google Scholar

    [4]

    Monod J, Changeux J P, Jacob F 1963 J. Mol. Biol. 6 306Google Scholar

    [5]

    Monod J, Wyman J, Changeux J P 1965 J. Mol. Biol. 12 88Google Scholar

    [6]

    Zhang G, Campbell E A, Minakhin L, Richter C, Severinov K, Darst S A 1999 Cell 98 811Google Scholar

    [7]

    Gnatt A L, Cramer P, Fu J, Bushnell D A, Kornberg R D 2001 Science 292 1876Google Scholar

    [8]

    Chen X, Yin X, Li J, Wu Z, Qi Y, Wang X, Liu W, Xu Y 2021 Science 372 eabg0635Google Scholar

    [9]

    Chen X, Qi Y, Wu Z, et al. 2021 Science 372 eaba8490Google Scholar

    [10]

    Huang K, Wu X X, Fang C L, et al. 2021 Science 374 1579Google Scholar

    [11]

    Komissarova N, Becker J, Solter S, Kireeva M, Kashlev M 2002 Mol. Cell 10 1151Google Scholar

    [12]

    Skourti-Stathaki K, Proudfoot N J, Gromak N 2011 Mol. Cell 42 794Google Scholar

    [13]

    Hazelbaker D Z, Marquardt S, Wlotzka W, Buratowski S 2013 Mol. Cell 49 55Google Scholar

    [14]

    Kim S, Beltran B, Irnov I, Jacobs-Wagner C 2019 Cell 179 106Google Scholar

    [15]

    Abbondanzieri E A, Greenleaf W J, Shaevitz J W, Landick R, Block S M 2005 Nature 438 460Google Scholar

    [16]

    Chakraborty A, Wang D, Ebright Y W, et al. 2012 Science 337 591Google Scholar

    [17]

    Howan K, Smith A J, Westblade L F, Joly N, Grange W, Zorman S, Darst S A, Savery N J, Strick T R 2012 Nature 490 431Google Scholar

    [18]

    Ma J, Bai L, Wang M D 2013 Science 340 1580Google Scholar

    [19]

    Koh H R, Roy R, Sorokina M, Tang G Q, Nandakumar D, Patel S S, Ha T 2018 Mol. Cell 70 695Google Scholar

    [20]

    Rosen G A, Baek I, Friedman L J, Joo Y J, Buratowski S, Gelles J 2020 Proc. Natl. Acad. Sci. 117 32348Google Scholar

    [21]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491Google Scholar

    [22]

    Roy R, Hohng S, Ha T J 2008 Nat. Methods 5 507Google Scholar

    [23]

    Gosse C, Croquette V 2002 Biophys. J. 82 3314Google Scholar

    [24]

    Cnossen J P, Dulin D, Dekker N H 2014 Rev. Sci. Instrum. 85 103712Google Scholar

    [25]

    Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S, Otto O, Keyser U F, Seidel R 2015 Nat. Commun. 6 5885Google Scholar

    [26]

    Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288Google Scholar

    [27]

    Ashkin A, Dziedzic J M 1987 Science 235 1517Google Scholar

    [28]

    Neuman K C, Block S M 2004 Rev. Sci. Instrum. 75 2787Google Scholar

    [29]

    Rief M, Gautel M, Oesterhelt F, Femandez J M, Gaub H E 1997 Science 276 1109Google Scholar

    [30]

    Yu H, Siewny M G W, Edwards D T, Sanders A W, Perkins T T 2017 Science 355 945Google Scholar

    [31]

    Jiao F, Cannon K S, Lin Y C, Gladfelter A S, Scheuring S 2020 Nat. Commu. 11 5062Google Scholar

    [32]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. 93 6264Google Scholar

    [33]

    Weiss S 1999 Science 283 1676Google Scholar

    [34]

    Lerner E, Cordes T, Ingargiola A, Alhadid Y, Chung S, Michalet X, Weiss S 2018 Science 359 eaan1133Google Scholar

    [35]

    Friedman L J, Chung J, Gelles J 2006 Biophys. J. 91 1023Google Scholar

    [36]

    Friedman L J, Gelles J 2015 Methods 86 27Google Scholar

    [37]

    Thompson M A, Lew M D, Moerner W 2012 Annu. Rev. Bioph. Biom. 41 321Google Scholar

    [38]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [39]

    Bates M, Huang B, Dempsey G T, Zhuang X 2007 Science 317 1749Google Scholar

    [40]

    Seol Y, Neuman K C 2017 Combined Magnetic Tweezers, Micro-mirror Total Internal Reflection Fluorescence Microscope for Single-molecule Manipulation and Visualization Single Molecule Analysis (New York: Springer) pp297–316

    [41]

    Fan J, Leroux-Coyau M, Savery N J, Strick T R 2016 Nature 536 234Google Scholar

    [42]

    Comstock M J, Whitley K D, Jia H, Sokoloski J, Lohman T M, Ha T, Chemla Y R 2015 Science 348 352Google Scholar

    [43]

    Lionnet T, Allemand J F, Revyakin A, Strick T R, Saleh O A, Bensimon D, Croquette V 2011 Cold Spring Harb. Protoc. 2012 133Google Scholar

    [44]

    Smith S B, Finzi L, Bustamante C 1992 Science 258 1122Google Scholar

    [45]

    Strick T R, Allemand J F, Bensimon D, Bensimon A, Croquette V 1996 Science 271 1835Google Scholar

    [46]

    Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M, Yan J 2015 J. Am. Chem. Soc. 137 3540Google Scholar

    [47]

    Guo Z, Hong H, Yuan G, Qian H, Li B, Cao Y, Wang W, Wu C X, Chen H 2020 Phys. Rev. Lett. 125 198101Google Scholar

    [48]

    Strick T, Allemand J F, Bensimon D, Croquette V 1998 Biophys. J. 74 2016Google Scholar

    [49]

    Revyakin A, Ebright R H, Strick T R 2004 Proc. Natl. Acad. Sci. U. S. A. 101 4776Google Scholar

    [50]

    Revyakin A, Ebright R H, Strick T R 2005 Nat. Methods 2 127Google Scholar

    [51]

    Yu L, Winkelman J T, Pukhrambam C, Strick T R, Nickels B E, Ebright R H 2017 eLife 6 e32038Google Scholar

    [52]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795Google Scholar

    [53]

    Roeder R G 2019 Nat Struct. Mol. Biol. 26 783Google Scholar

    [54]

    Pomerantz R T, O’Donnell M 2010 Science 327 590Google Scholar

    [55]

    Merrikh H, Machón C, Grainger W H, Grossman A D, Soultanas P 2011 Nature 470 554Google Scholar

    [56]

    Tomko E J, Fishburn J, Hahn S, Galburt E A 2017 Nat Struct. Mol. Biol. 24 1139Google Scholar

    [57]

    Revyakin A, Liu C, Ebright R H, Strick T R 2006 Science 314 1139Google Scholar

    [58]

    Kapanidis A N, Margeat E, Ho S O, Kortkhonjia E, Weiss S, Ebright R H 2006 Science 314 1144Google Scholar

    [59]

    Lerner E, Chung S, Allen B L, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 6562Google Scholar

    [60]

    Wang D, Bushnell D A, Huang X, Westover K D, Levitt M, Kornberg R D 2009 Science 324 1203Google Scholar

    [61]

    Zhang Y, Han W, Wang L, Wang H, Jia Q, Chen T, Wang S, Li M 2023 J. Phys. Chem. B 127 2909Google Scholar

    [62]

    Zhu C, Guo X, Dumas P, Takacs M, Abdelkareem M, Broeck A V, Saint-André C, Papai G, Crucifix C, Ortiz J, Weixlbaumer A 2022 Nat. Commun. 13 1546Google Scholar

    [63]

    Ray-Soni A, Bellecourt M J, Landick R 2016 Annu. Rev. Biochem. 85 319Google Scholar

    [64]

    Kim M, Vasiljeva L, Rando O J, Zhelkovsky A, Moore C, Buratowski S 2006 Mol. Cell 24 723Google Scholar

    [65]

    Arndt K M, Reines D 2015 Annu. Rev. Biochem. 84 381Google Scholar

    [66]

    Fazal F M, Meng C A, Murakami K, Kornberg R D, Block S M 2015 Nature 525 274Google Scholar

    [67]

    Wang S, Han Z, Libri D, Porrua O, Strick T R 2019 Nat. Commun. 10 1545Google Scholar

    [68]

    Klein H L, Ang K K, Arkin M R, et al. 2019 Microbial. Cell 6 65Google Scholar

    [69]

    王爽, 郑海子, 赵振业, 陆越, 徐春华 2013 62 168703Google Scholar

    Wang S, Zheng H Z, Zhao Z Y, Lu Y, Xu C H 2013 Acta Phys. Sin. 62 168703Google Scholar

    [70]

    Graves E T, Duboc C, Fan J, Stransky F, Leroux-Coyau M, Strick T R 2015 Nat. Struct. Mol. Biol. 22 452Google Scholar

  • [1] Zhang Qi-Lin, Wang Rui-Feng, Zhou Tong, Wang Yun-Jie, Liu Qi. Molecular dynamics simulation of infrared absorption spectra of one-dimensional ordered single-file water. Acta Physica Sinica, 2023, 72(8): 084207. doi: 10.7498/aps.72.20222031
    [2] Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu. Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein. Acta Physica Sinica, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [3] Chen Yu-Jiang, Jiang Wu-Gui, Lin Yan-Wen, Zheng Pan. A novel triple-walled carbon nanotube screwing oscillator: a molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [4] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [5] Wang Qiong, Wang Kai-Ge, Meng Kang Kang, Sun Dan, Han Tong Yu, Gao Ai-Hua. Electrodynamic characteristics of λ-DNA molecule translocating through the microfluidic channel port studied with single molecular fluorescence imaging technology. Acta Physica Sinica, 2020, 69(16): 168202. doi: 10.7498/aps.69.20200074
    [6] Yao Hong-Bin, Jiang Xiang-Zhan, Cao Chang-Hong, Li Wen-Liang. Theoretical study of dissociation dynamics of HD+ and its quantum control with an intense laser field. Acta Physica Sinica, 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [7] Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Single-molecule probes revealed dynamics of confined nano-regions in miscible polymer blends. Acta Physica Sinica, 2019, 68(14): 148201. doi: 10.7498/aps.68.20190423
    [8] Ma Jian-Bing, Zhai Yong-Liang, Nong Da-Guan, Li Jing-Hua, Fu Hang, Zhang Xing-Hua, Li Ming, Lu Ying, Xu Chun-Hua. Single molecule transverse magnetic tweezers based on light sheet illumination. Acta Physica Sinica, 2018, 67(14): 148702. doi: 10.7498/aps.67.20180441
    [9] Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua. Interaction between Sso7d and DNA studied by single-molecule technique. Acta Physica Sinica, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [10] Lu Yue, Ma Jian-Bing, Teng Cui-Juan, Lu Ying, Li Ming, Xu Chun-Hua. Binding process between E.coli SSB and ssDNA by single-molecule dynamics. Acta Physica Sinica, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [11] Li Bin, Zhang Guo-Feng, Jing Ming-Yong, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Single molecule optical-probes measured power law distribution of polymer dynamics. Acta Physica Sinica, 2016, 65(21): 218201. doi: 10.7498/aps.65.218201
    [12] Qian Hui, Chen Hu, Yan Jie. Frontier of soft matter experimental technique: single molecular manipulation. Acta Physica Sinica, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [13] Wang Qi-Dong, Peng Zeng-Hui, Liu Yong-Gang, Yao Li-Shuang, Ren Gan, Xuan Li. Rotational viscosity comparison of liquid crystals based on the molecular dynamics of mixtures. Acta Physica Sinica, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [14] Wang Can-Jun. Colored noise induced switch in the gene transcriptional regulatory system. Acta Physica Sinica, 2012, 61(1): 010503. doi: 10.7498/aps.61.010503
    [15] Zhang Guo-Feng, Cheng Feng-Yu, Jia Suo-Tang, Sun Jian-Hu, Xiao Lian-Tuan, Zhang Fang. Experiment study of orientation and reorientation quantum dynamics of single dye molecules at room temperature. Acta Physica Sinica, 2009, 58(4): 2364-2368. doi: 10.7498/aps.58.2364
    [16] Zheng Yu-Jun, Zhang Zhao-Yu, Zhang Xi-Zhong. Similarity of high-order cumulants for single molecule kinetics. Acta Physica Sinica, 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [17] Zhang Xing-Hua, Xiao Bin, Hou Xi-Miao, Xu Chun-Hua, Wang Peng-Ye, Li Ming. Study of cisplatin-induced DNA compaction using single molecule magnetic tweezers. Acta Physica Sinica, 2009, 58(6): 4301-4306. doi: 10.7498/aps.58.4301
    [18] Wang Yu, Zhang Lin-Xi. Steered molecular dynamics investigation of force-induced detachment of adsorbed single polymer chains. Acta Physica Sinica, 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [19] Cao Li-Xia, Wang Chong-Yu. Molecular dynamics simulation of fracture in α-iron. Acta Physica Sinica, 2007, 56(1): 413-422. doi: 10.7498/aps.56.413
    [20] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
Metrics
  • Abstract views:  3985
  • PDF Downloads:  135
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2023
  • Accepted Date:  15 August 2023
  • Available Online:  08 September 2023
  • Published Online:  05 November 2023

/

返回文章
返回
Baidu
map