Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation study on growth of Richtmyer-Meshkov-like instability of density perturbation and its coupling with unperturbed interfaces

Sun Bei-Bei Ye Wen-Hua Zhang Wei-Yan

Citation:

Numerical simulation study on growth of Richtmyer-Meshkov-like instability of density perturbation and its coupling with unperturbed interfaces

Sun Bei-Bei, Ye Wen-Hua, Zhang Wei-Yan
PDF
HTML
Get Citation
  • The interaction between the shock and the internal density perturbation of the target material produces a Richtmyer-Meshkov-like (RM-like) instability, which couples with the ablation front and generates instability seeds. Recent studies have demonstrated the significance of internal material density perturbations to implosion performance. This paper presents a two-dimensional numerical investigation of the growth of the RM-like instability in linear region and its coupling mechanism with the interface. Euler equations in two dimensions are solved in Cartesian coordinates by using the fifth-order WENO scheme in space and the two-step Runge-Kutta scheme in time. The computational domain has a length of 200 μm in the x-direction and λy in the y-direction. The numerical resolution adopted in this paper is $ {\Delta _x} = {\Delta _y} = {\lambda _y}/128 $. A periodic boundary condition is used in the y-direction, while an outflow boundary condition is used in the x-direction. The interaction between shock and density perturbation will deposit vorticity in the density perturbation region. The width of the density perturbation region can be represented by the width of the vortex pair. The growth rate of the RM-like instability can be represented by the growth rate of the width of the density-disturbed region or the maximum perturbation velocity in the y-direction. The simulation results show that the growth rate of the vortex pair width is proportional to the perturbation wave number ky, the perturbation amplitude η, and the velocity difference before and after the shock wave Δu, specifically, δvkyΔ. In the problem of coupling the RM-like instability with the interface, we calculate the derivation of the interface perturbation amplitude with respect to time to obtain the growth rate of the interface. It is concluded from the simulations that the coupling of the RM-like instability with the interface has two mechanisms: acoustic coupling and vortex merging. When the density perturbation region is far from the interface, only acoustic wave is coupled with the interface. The dimensionless growth rate of interface perturbation caused by acoustic coupling decays exponentially with kyL, δvi/(kyΔ)∝$ {{\text{e}}^{ - {k_y}L}} $. When the density perturbation region is closer to the interface, acoustic coupling and vortex merging work together. The vortex merging leads to an increase in the perturbation velocity when the Atwood number of the interface is positive. When the Atwood number is positive, reducing the Atwood number at the interface and increasing the width of the transition layer at the interface can both reduce the growth of interface perturbation caused by the RM-like instability coupling.
      Corresponding author: Sun Bei-Bei, s19930816@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675026, 11575033).
    [1]

    Craxton R S, Anderson K S, Roehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty M C, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [2]

    Goncharov V N, Regan S P, Campbell E M, Sangster T C, Radha P B, Myatt J F, Froula D H, Betti R, Boehly T R, Delettrez J A, Edgell D H, Epstein R, Forrest C J, Yu Glebov V, Harding D R, Hu S X, Igumenshchev I V, Marshall F J, McCrory R L, Michel D T, Seka W, Shvydky A, Stoeckl C, Theobald W, Gatu-Johnson M 2017 Plasma Phys. Control. Fusion 59 014008Google Scholar

    [3]

    Campbell E M, Sangster T C, Goncharov V N, Zuegel J D, Morse S F B, Sorce C, Collins G W, Wei M S, Betti R, Regan S P, et al. 2021 Phil. Trans. R. Soc. A 379 20200011Google Scholar

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [5]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford University Press) pp198–252

    [6]

    Zhou C D, Betti R 2007 Phys. Plasmas 14 072703Google Scholar

    [7]

    Rayleigh L 1883 Proc. London Math. Soc. s1 170Google Scholar

    [8]

    Taylor G 1950 Proc. R. Soc. London: Ser. A 201 192Google Scholar

    [9]

    Lindl J D, Mead W C 1975 Phys. Rev. Lett. 34 1273Google Scholar

    [10]

    Takabe H, Mima K, Montierth L, Morse R L 1985 Phys. Fluids 28 3676Google Scholar

    [11]

    Igumenshchev I V, Velikovich A L, Goncharov V N, Betti R, Campbell E M, Knauer J P, Regan S P, Schmitt A J, Shah R C, Shvydky A 2019 Phys. Rev. Lett. 123 065001Google Scholar

    [12]

    Peterson J L, Clark D S, Masse L P, Suter L J 2014 Phys. Plasmas 21 092710Google Scholar

    [13]

    Miller S C, Goncharov V N 2022 Phys. Plasmas 29 082701Google Scholar

    [14]

    Harding D R, Shmayda W T 2013 Fusion Sci. Technol. 63 125Google Scholar

    [15]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar

    [16]

    Meshkov E E 1969 Fluid Dyn. 4 101Google Scholar

    [17]

    Wouchuk J G, Nishihara K 1997 Phys. Plasmas 4 1028Google Scholar

    [18]

    Wouchuk J G 2001 Phys. Rev. E 63 056303Google Scholar

    [19]

    Wouchuk J G 2001 Phys. Plasmas 8 2890Google Scholar

    [20]

    Campos F C, Wouchuk J G 2016 Phys. Rev. E 93 053111Google Scholar

    [21]

    Campos F C, Wouchuk J G 2017 Phys. Rev. E 96 013102Google Scholar

    [22]

    Pickworth L A, Hammel B A, Smalyuk V A, Robey H F, Benedetti L R, Berzak Hopkins L, Bradley D K, Field J E, Haan S W, Hatarik R, Hartouni E, Izumi N, Johnson S, Khan S, Lahmann B, Landen O L, Le Pape S, MacPhee A G, Meezan N B, Milovich J, Nagel S R, Nikroo A, Pak A E, Petrasso R, Remington B A, Rice N G, Springer P T, Stadermann M, Widmann K, Hsing W 2018 Phys. Plasmas 25 054502Google Scholar

    [23]

    Collins T J B, Stoeckl C, Epstein R, Bittle W A, Forrest C J, Glebov V Y, Goncharov V N, Harding D R, Hu S X, Jacobs-Perkins D W, Kosc T Z, Marozas J A, Mileham C, Marshall F J 2022 Phys. Plasmas 29 012703Google Scholar

    [24]

    Haines B M, Olson R E, Sweet W, Yi S A, Zylstra A B, Bradley P A, Elsner F, Huang H, Jimenez R, Kline J L, Kong C, Kyrala G A, Leeper R J, Paguio R, Pajoom S, Peterson R R, Ratledge M, Rice N 2019 Phys. Plasmas 26 012707Google Scholar

    [25]

    Haines B M, Sauppe J P, Albright B J, Daughton W S, Finnegan S M, Kline J L, Smidt J M 2022 Phys. Plasmas 29 042704Google Scholar

    [26]

    Liu Y X, Chen Z, Wang L F, Li Z Y, Wu J F, Ye W H, Li Y J 2023 Phys. Plasmas 30 042704Google Scholar

    [27]

    Li Z Y, Wang L F, Wu J F, Ye W H 2020 Acta Mech. Sin. 36 789Google Scholar

    [28]

    Sano T, Ishigure K, Campos F C 2020 Phys. Rev. E 102 013203Google Scholar

    [29]

    Goncharov V N 1999 Phys. Rev. Lett. 82 2091Google Scholar

    [30]

    Goncharov V N, Gotchev O V, Vianello E, Boehly T R, Knauer J P, McKenty P W, Radha P B, Regan S P, Sangster T C, Skupsky S, Smalyuk V A, Betti R, McCrory R L, Meyerhofer D D, Cherfils-Clérouin C 2006 Phys. Plasmas 13 012702Google Scholar

    [31]

    Mikaelian K O 1985 Phys. Rev. A 31 410Google Scholar

    [32]

    Mikaelian K O 1983 Phys. Rev. A 28 1637Google Scholar

  • 图 1  数值模拟初始设置示意图

    Figure 1.  Schematics of the initial configuration.

    图 2  算例SPI1在1 ns (a)和3 ns (b)时的涡量场. 蓝色圈起部分为密度扰动区域, 红色虚线标注了冲击波位置

    Figure 2.  Contour of vorticity at 1 ns (a) and 3 ns (b) of case SPI1. Blue circled part is the density perturbation region, and the red dashed line indicates the position of the shock.

    图 3  算例SPI1的涡对宽度(a)和y方向最大扰动速度(b)随时间的变化

    Figure 3.  Time histories of the width of the vortex pair (a) and the maximum tangential velocity (b) of case SPI1.

    图 4  密度扰动宽度增长速度δvkyΔ的变化

    Figure 4.  Curve of density perturbation width growth rate δv versus kyΔ.

    图 5  类RM不稳定性与界面耦合问题的密度云图, 此算例中的物理参数为Ma = 9.5, η = 0.3, λy = 20 μm, At = 0.77

    Figure 5.  Contour of density of the RM-like instability and interface coupling problem, the physical parameters in this case are Ma = 9.5, η = 0.3, λy = 20 μm, At = 0.77.

    图 6  y方向扰动速度云图 (a) L = 5.53 μm; (b) L = 3.53 μm; (c) L = 1.53 μm. 物理参数Ma = 9.5, η = 0.05, λy = 20 μm, At = 0.77

    Figure 6.  Contour of the y-component of the perturbation velocity: (a) L = 5.53 μm; (b) L = 3.53 μm; (c) L = 1.53 μm. Physical parameters: Ma = 9.5, η = 0.05, λy = 20 μm, At = 0.77.

    图 7  不同L时, 界面扰动幅值随时间的变化 (a) λy = 20 μm; (b) λy = 40 μm.

    Figure 7.  Variation of interface perturbation amplitudes with time for different L: (a) λy = 20 μm; (b) λy = 40 μm.

    图 8  界面扰动增长速度δvi/(kyΔ)随$ {{\text{e}}^{ - {k_y}L}} $的变化

    Figure 8.  Curve of the interface disturbance growth rate δvi/(kyΔ) versus $ {{\text{e}}^{ - {k_y}L}} $.

    图 9  不同界面Atwood数时, 界面扰动幅值随时间的变化

    Figure 9.  Time evolution of interface perturbation amplitude at different Atwood numbers.

    图 10  不同界面过渡层宽度时, 界面扰动幅值随时间的变化

    Figure 10.  Time evolution of interface perturbation amplitude with different density transition layer

    表 1  不同算例的参数设置

    Table 1.  Initial physical parameters in different cases.

    算例 SPI1 SPI2 SPI3 SPI4 SPI5 SPI6 SPI7 SPI8 SPI9 SPI10 SPI11 SPI12
    η 0.1 0.1 0.1 0.1 0.05 0.2 0.3 0.4 0.1 0.1 0.1 0.1
    Ma M0 M0 M0 M0 M0 M0 M0 M0 M0/8 M0/2 1.5M0 2.0M0
    λy/μm 20 40 60 80 20 20 20 20 20 20 20 20
    kyΔ 0.037 0.019 0.012 0.009 0.019 0.075 0.11 0.15 0.0014 0.018 0.056 0.075
    DownLoad: CSV
    Baidu
  • [1]

    Craxton R S, Anderson K S, Roehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty M C, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [2]

    Goncharov V N, Regan S P, Campbell E M, Sangster T C, Radha P B, Myatt J F, Froula D H, Betti R, Boehly T R, Delettrez J A, Edgell D H, Epstein R, Forrest C J, Yu Glebov V, Harding D R, Hu S X, Igumenshchev I V, Marshall F J, McCrory R L, Michel D T, Seka W, Shvydky A, Stoeckl C, Theobald W, Gatu-Johnson M 2017 Plasma Phys. Control. Fusion 59 014008Google Scholar

    [3]

    Campbell E M, Sangster T C, Goncharov V N, Zuegel J D, Morse S F B, Sorce C, Collins G W, Wei M S, Betti R, Regan S P, et al. 2021 Phil. Trans. R. Soc. A 379 20200011Google Scholar

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [5]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford University Press) pp198–252

    [6]

    Zhou C D, Betti R 2007 Phys. Plasmas 14 072703Google Scholar

    [7]

    Rayleigh L 1883 Proc. London Math. Soc. s1 170Google Scholar

    [8]

    Taylor G 1950 Proc. R. Soc. London: Ser. A 201 192Google Scholar

    [9]

    Lindl J D, Mead W C 1975 Phys. Rev. Lett. 34 1273Google Scholar

    [10]

    Takabe H, Mima K, Montierth L, Morse R L 1985 Phys. Fluids 28 3676Google Scholar

    [11]

    Igumenshchev I V, Velikovich A L, Goncharov V N, Betti R, Campbell E M, Knauer J P, Regan S P, Schmitt A J, Shah R C, Shvydky A 2019 Phys. Rev. Lett. 123 065001Google Scholar

    [12]

    Peterson J L, Clark D S, Masse L P, Suter L J 2014 Phys. Plasmas 21 092710Google Scholar

    [13]

    Miller S C, Goncharov V N 2022 Phys. Plasmas 29 082701Google Scholar

    [14]

    Harding D R, Shmayda W T 2013 Fusion Sci. Technol. 63 125Google Scholar

    [15]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar

    [16]

    Meshkov E E 1969 Fluid Dyn. 4 101Google Scholar

    [17]

    Wouchuk J G, Nishihara K 1997 Phys. Plasmas 4 1028Google Scholar

    [18]

    Wouchuk J G 2001 Phys. Rev. E 63 056303Google Scholar

    [19]

    Wouchuk J G 2001 Phys. Plasmas 8 2890Google Scholar

    [20]

    Campos F C, Wouchuk J G 2016 Phys. Rev. E 93 053111Google Scholar

    [21]

    Campos F C, Wouchuk J G 2017 Phys. Rev. E 96 013102Google Scholar

    [22]

    Pickworth L A, Hammel B A, Smalyuk V A, Robey H F, Benedetti L R, Berzak Hopkins L, Bradley D K, Field J E, Haan S W, Hatarik R, Hartouni E, Izumi N, Johnson S, Khan S, Lahmann B, Landen O L, Le Pape S, MacPhee A G, Meezan N B, Milovich J, Nagel S R, Nikroo A, Pak A E, Petrasso R, Remington B A, Rice N G, Springer P T, Stadermann M, Widmann K, Hsing W 2018 Phys. Plasmas 25 054502Google Scholar

    [23]

    Collins T J B, Stoeckl C, Epstein R, Bittle W A, Forrest C J, Glebov V Y, Goncharov V N, Harding D R, Hu S X, Jacobs-Perkins D W, Kosc T Z, Marozas J A, Mileham C, Marshall F J 2022 Phys. Plasmas 29 012703Google Scholar

    [24]

    Haines B M, Olson R E, Sweet W, Yi S A, Zylstra A B, Bradley P A, Elsner F, Huang H, Jimenez R, Kline J L, Kong C, Kyrala G A, Leeper R J, Paguio R, Pajoom S, Peterson R R, Ratledge M, Rice N 2019 Phys. Plasmas 26 012707Google Scholar

    [25]

    Haines B M, Sauppe J P, Albright B J, Daughton W S, Finnegan S M, Kline J L, Smidt J M 2022 Phys. Plasmas 29 042704Google Scholar

    [26]

    Liu Y X, Chen Z, Wang L F, Li Z Y, Wu J F, Ye W H, Li Y J 2023 Phys. Plasmas 30 042704Google Scholar

    [27]

    Li Z Y, Wang L F, Wu J F, Ye W H 2020 Acta Mech. Sin. 36 789Google Scholar

    [28]

    Sano T, Ishigure K, Campos F C 2020 Phys. Rev. E 102 013203Google Scholar

    [29]

    Goncharov V N 1999 Phys. Rev. Lett. 82 2091Google Scholar

    [30]

    Goncharov V N, Gotchev O V, Vianello E, Boehly T R, Knauer J P, McKenty P W, Radha P B, Regan S P, Sangster T C, Skupsky S, Smalyuk V A, Betti R, McCrory R L, Meyerhofer D D, Cherfils-Clérouin C 2006 Phys. Plasmas 13 012702Google Scholar

    [31]

    Mikaelian K O 1985 Phys. Rev. A 31 410Google Scholar

    [32]

    Mikaelian K O 1983 Phys. Rev. A 28 1637Google Scholar

  • [1] Liu Qing-Kang, Zhang Xu, Cai Hong-Bo, Zhang En-Hao, Gao Yan-Qi, Zhu Shao-Ping. Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser. Acta Physica Sinica, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [2] Shui Min, Yu Ming-Hai, Chu Gen-Bai, Xi Tao, Fan Wei, Zhao Yong-Qiang, Xin Jian-Ting, He Wei-Hua, Gu Yu-Qiu. Observation of ejecta tin particles into polymer foam through high-energy X-ray radiograpy using high-intensity short-pulse laser. Acta Physica Sinica, 2019, 68(7): 076201. doi: 10.7498/aps.68.20182280
    [3] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [4] Li Hong-Xun, Zhang Rui, Zhu Na, Tian Xiao-Cheng, Xu Dang-Peng, Zhou Dan-Dan, Zong Zhao-Yu, Fan Meng-Qiu, Xie Liang-Hua, Zheng Tian-Ran, Li Zhao-Li. Uniform irradiation of a direct drive target by optimizing the beam parameters. Acta Physica Sinica, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [5] Deng Xue-Wei, Zhou Wei, Yuan Qiang, Dai Wan-Jun, Hu Dong-Xia, Zhu Qi-Hua, Jing Feng. Capsule illumination uniformity illuminated by direct laser-driven irradiation from several tens of directions. Acta Physica Sinica, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [6] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [7] Song Tian-Ming, Yi Rong-Qing, Cui Yan-Li, Yu Rui-Zhen, Yang Jia-Min, Zhu Tuo, Hou Li-Fei, Du Hua-Bing. Fiducial system for the diagnosis of temporal evolution of radiation fluxes with soft-X-ray spectrometer in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [8] Jing Long-Fei, Huang Tian-Xuan, Jiang Shao-En, Chen Bo-Lun, Pu Yu-Dong, Hu Feng, Cheng Shu-Bo. Model analysis of experiments of implosion symmetry on Shenguang-Ⅱ and Shenguang-Ⅲ prototype laser facilities. Acta Physica Sinica, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [9] Yan Ji, Zheng Jian-Hua, Chen Li, Lin Zhi-Wei, Jiang Shao-En. The application of phase contrast imaging to implosion capsule diagnose in high energy density physics environment. Acta Physica Sinica, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [10] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [11] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [12] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [13] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Ding Lei, Tang Jun, Liu Hua, Jing Feng, Zhang Xiao-Min. Experimental research on smoothing by spectral dispersion based on wave-guide phase modulator. Acta Physica Sinica, 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [14] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Deng Qing-Hua. Experimental study on smoothing by spectral dispersion using linear frequency-modulated pulse. Acta Physica Sinica, 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [15] Cheng Wen-Yong, Zhang Xiao-Min, Su Jing-Qin, Zhao Sheng-Zhi, Dong Jun, Li Ping, Zhou Li-Dan. Suppression of small-scale self focusing of high power laser using moving beam. Acta Physica Sinica, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [16] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [17] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] Yao Xin, Gao Fu-Hua, Li Jian-Feng, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang. Study on the near field modulation and laser induced damage of beam sampling grating. Acta Physica Sinica, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [19] Near field modulation and laser induced damage of color separation gratings and combined color separation gratings-beam sampling gratings optical elements for use in inertial confinement fusion system. Acta Physica Sinica, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [20] YANG HONG-QIONG, YANG JIAN-LUN, WEN SHU-HUAI, WANG GEN-XING, GUO YU-ZHI, TANG ZHENG-YUAN, MU WEI-BING, MA CHI. DT FUEL AREAL DENSITY DIAGNOSTIC IN DIRECT-DRIVEN IMPLOSIONS. Acta Physica Sinica, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
Metrics
  • Abstract views:  2555
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2023
  • Accepted Date:  18 August 2023
  • Available Online:  19 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回
Baidu
map