搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光加载下金属锡材料微喷颗粒与低密度泡沫混合实验研究

税敏 于明海 储根柏 席涛 范伟 赵永强 辛建婷 何卫华 谷渝秋

引用本文:
Citation:

激光加载下金属锡材料微喷颗粒与低密度泡沫混合实验研究

税敏, 于明海, 储根柏, 席涛, 范伟, 赵永强, 辛建婷, 何卫华, 谷渝秋

Observation of ejecta tin particles into polymer foam through high-energy X-ray radiograpy using high-intensity short-pulse laser

Shui Min, Yu Ming-Hai, Chu Gen-Bai, Xi Tao, Fan Wei, Zhao Yong-Qiang, Xin Jian-Ting, He Wei-Hua, Gu Yu-Qiu
PDF
HTML
导出引用
  • 金属材料的微喷是冲击加载下金属表面发生的一种动态破碎现象, 微喷研究在很多领域都具有重要意义, 包括惯性约束聚变(ICF)和烟火制造等. 由于激光实验特有的优势, 近几年国内外开展了很多利用强激光驱动冲击加载研究材料微喷过程的实验. 利用泡沫材料对微喷颗粒进行静态软回收虽然可以获得颗粒的形态分布、颗粒尺寸及颗粒质量等定量结果, 但并不能反演微喷颗粒从进入泡沫到停滞过程中的动态混合过程. 为此, 在神光Ⅱ升级装置上利用皮秒脉冲激光照射金丝产生高能X射线, 实现了对锡微喷颗粒与低密度泡沫混合过程的高时间分辨和高空间分辨背光照相. 背光图像面密度结果证实微喷颗粒在泡沫中并没有发生二次破碎. 静态回收结果表明, 在锡材料与泡沫紧贴放置的情况下, 微喷颗粒在泡沫中的穿透深度随着加载压强升高呈现先增大后减小的规律, 与非紧贴放置的实验结果有明显的差别.
    Micron-scale fragment ejection of metal is a kind of surface dynamic fragmentation phenomenon upon shock loading. The study of ejecta is crucial in many fields, such as inertial confinement fusion and pyrotechnics. Due to the particular advantages of laser experiments, a lot of studies of ejecta by strong laser-induced shock loading have been conducted in recent years. The shapes, size and mass of particle can be obtained via static soft recovery technique with foam. However, the stagnation and succedent mixing of the ejecta in the foam could not be deduced by this technique. To study the mixing between the ejecta and foam, a radiography experiment is performed by using the X-ray generated through the irradiation of picosecond laser on the golden wire. This radiography technique has not only high spatial resolution but also high temporal resolution. Two kind of experiments are designed and performed. In the first one, the tin sample and the foam are close to each other while a vacuum gap is arranged between them in the other one. The mixing process is analyzed with the determined areal density and volume density, as well as the results of recovery. The areal density of the front mixing area is similar to the scenario in the case with a vacuum gap, suggesting that the ejecta have not underwent a secondary fragmentation due to the collision with foam. Furthermore, the static recovery results show a different characteristic of penetration depth for the ejecta in the foam. When the tin sample is not close to the foam, the penetration depth in the foam increases with the loading pressure increasing. However, the penetration depth begins to decrease at a critical pressure after a brief increase, which is attributed to the interaction between the shock and the foam before the ejecta coming, and also to the ejecta size and composition. The shock pressure is high enough to change the foam performance, thus enhancing the stagnation ability for ejecta penetration. Moreover, the size and composition vary with loading pressure, thereby leading to the momentum change of the ejecta related to the penetration depth. In the future work, we will improve the field of view of the X-ray radiography to achieve a direct comparison between the dynamic results and the recovery results. Moreover, we will arrange perturbations at the interface to study the mixing between the micro-jetting and the foam and the interface instability.
      通信作者: 税敏, shuimin123@163.com ; 何卫华, 564869181@qq.com
      Corresponding author: Shui Min, shuimin123@163.com ; He Wei-Hua, 564869181@qq.com
    [1]

    王裴, 何安民, 邵建立, 孙海权, 陈大伟, 刘文斌, 刘军 2018 中国科学: 物理学 力学 天文学 48 094608

    Wang P, He A M, Shao J L, Sun H Q, Chen D W, Liu W B, Liu J 2018 Sci. China: Physica, Mechanica & Astronomica 48 094608

    [2]

    de Resseguier T, Signor L, Dragon A, Boustie M, Roy G, Llorca F 2007 J. Appl. Phys. 101 013506Google Scholar

    [3]

    de Resseguier T, Roland C, Prudhomme G, Lescoute E, Loison D, Mercier P 2016 J. Appl. Phys. 119 185108Google Scholar

    [4]

    de Resseguier T, Roland C, Lescoute E, Sollier A, Loison D, Berthe L, Prudhomme G, Mercier P 2015 AIP Conf. Proc. 1793 100025

    [5]

    de Resseguier T, Signor L, Dragon A, Severin P, Boustie M 2007 J. Appl. Phys. 102 073535Google Scholar

    [6]

    de Resseguier T, Signor L, Dragon A, Boustie M, Berthe L 2008 Appl. Phys. Lett. 92 131910Google Scholar

    [7]

    de Resseguier D, Signor L, Dragon A, Roy G 2010 Int. J. Fract. 163 109Google Scholar

    [8]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502Google Scholar

    [9]

    Franzkowiak J E, Prudhomme G, Mercier P, Lauriot S, Dubreuil E, Berthe L 2018 Rev. Sci. Instrum. 89 033901Google Scholar

    [10]

    Asay J R 1978 J. Appl. Phys. 49 6173Google Scholar

    [11]

    Morard G, de Resseguier T, Vinci T, Benuzzi-Mounaix A, Lescoute E, Brambrink E, Koenig M, Wei H, Diziere A, Occelli F, Fiquet G, Guyot F 2010 Phys. Rev. B 82 174102Google Scholar

    [12]

    de Resseguier T, Lescoute E, Sollier A, Prudhomme G, Mercier P 2014 J. Appl. Phys. 115 043525Google Scholar

    [13]

    Lescoute E, de Resseguier T, Chevalier J M, Boustie M, Cuq-Lelandais J P, Berthe L 2009 Appl. Phys. Lett. 95 211905Google Scholar

    [14]

    辛建婷, 谷渝秋, 李平, 罗炫, 蒋柏斌, 谭放, 韩丹, 巫殷忠, 赵宗清, 粟敬钦, 张保汉 2012 23 236201Google Scholar

    Xin J T, Gu Y Q, Li P, Luo X, Jiang B B, Tan F, Han D, Wu Y Z, Zhao Z Q, Su J Q, Zhang B H 2012 Acta Phys. Sin. 23 236201Google Scholar

    [15]

    He W H, Xin J T, Chu G B, Li J, Shao J L, Lu F, Shui M, Qian F, Cao L F, Wang P, Gu Y Q 2014 Optics Express 22 18924Google Scholar

    [16]

    He W H, Xin J T, Zhao Y Q, Chu G B, Xi T, Shui M, Lu F, Gu Y Q 2017 AIP Advances 7 065306Google Scholar

    [17]

    辛建婷, 赵永强, 储根柏, 席涛, 税敏, 范伟, 何卫华, 谷渝秋 2017 18 186201Google Scholar

    Xin J T, Zhao Y Q, Chu G B, Xi T, Shui M, Fan W, He W H, Gu Y Q 2017 Acta Phys. Sin. 18 186201Google Scholar

    [18]

    张林, 李英华, 程晋明, 李雪梅, 张祖根, 叶想平, 蔡灵仓 2016 强激光与粒子束 28 041003

    Zhang L, Li Y H, Cheng J M, Li X M, Zhang Z G, Ye X P, Cai L C 2016 High Power Laser and Particle Beams 28 041003

    [19]

    Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T, Gu Y Q 2018 Rev. Sci. Instrum. 89 115106Google Scholar

    [20]

    Marshall F J, McKenty P W, DelettrezJ A, Epstein R, Knauer J P, Smalyuk V A 2009 Phys. Rev. Lett. 102 185004Google Scholar

    [21]

    Dimonte G, Gore R, and Schneider M 1998 Phys. Rev. Lett. 80 1212Google Scholar

    [22]

    Buttler W T, Oro D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60Google Scholar

    [23]

    Dimonte G, Terrones G, Cherne F J, Ramaprabhu P 2013 J Appl. Phys. 113 024905Google Scholar

    [24]

    Dimonte G and Remington B 1993 Phys. Rev. Lett. 70 1806Google Scholar

    [25]

    Kuranz C C, Park H S, Huntington C M, Miles A R, Remington B A, Plewa T, Trantham M R, Robey H F, Shvarts D, Shimony A, Raman K, MacLaren S, Wan W C, Doss F W, Kline J, Flippo K A, Malamud G, Handy T A, Prisbrey S, Krauland C M, Klein S R, Harding E C, Wallace R, Grosskopf M J, Marion D C, Kalantar D, Giraldez E, Drake R P 2018 Nature Communications 9 1564Google Scholar

  • 图 1  神光Ⅱ升级微喷泡沫混合实验原理示意图

    Fig. 1.  Schematic of the experiment.

    图 2  实验诊断排布图(俯视图)

    Fig. 2.  Schematic of experimental diagnosis(top view).

    图 3  标定面密度的锡台阶参数

    Fig. 3.  Tin step wedge for areal density calibrating.

    图 4  面密度标定曲线

    Fig. 4.  Calibrated curves of areal density.

    图 5  PMP泡沫(a)和有机玻璃(b)对X射线的透过率

    Fig. 5.  X-ray transmittance of PMP foam (a) and PMMA (b).

    图 6  不同发次回收的微喷颗粒图像 (a) 72发, 2 GPa; (b) 73发, 20 GPa; (c) 72发, 24 GPa; (d) 76发, 25 GPa; (e) 75发, 28 GPa; (f) 77发, 31 GPa; (g) 78发, 32 GPa; (h) 80发, 39 GPa; (i) 79发, 41 GPa

    Fig. 6.  Recovery image of tin fragments stagnated in the foam by 2-D CT analysis: (a) 72 shot, 2 GPa; (b) 73 shot, 20 GPa; (c) 72 shot, 24 GPa; (d) 76 shot, 25 GPa; (e) 75 shot, 28 GPa; (f) 77 shot, 31 GPa; (g) 78 shot, 32 GPa; (h) 80 shot, 39 GPa; (i) 79 shot, 41 GPa.

    图 7  紧贴条件和非紧贴条件下, 不同压强下微喷颗粒在泡沫中的穿透深度比较

    Fig. 7.  Penetration depth of the tin fragments in foam versus pressure, with and without vacuum gap.

    图 8  紧贴条件和非紧贴条件下, 不同压强下微喷头部颗粒的平均速度比较

    Fig. 8.  Average velocity of front fragments versus laoding pressure, with and without vacuum gap.

    图 9  (a) 72发背光图像, 压强2 GPa; (b)非紧贴条件下典型层裂图像, 66发, 压强15 GPa

    Fig. 9.  Radiographs of shot 72 at 2 GPa (a); spall image with vacuum gap at 15 GPa, shot 66 (b).

    图 10  76发背光图像, 压强25 GPa

    Fig. 10.  Radiograph image of shot 76 at 25 GPa.

    图 11  (a) 75发背光图像, 压强28 GPa; (b) 56发背光图像, 压强30 GPa

    Fig. 11.  Radiographs of shot 75 at 28 GPa (a) and shot 56 at 30 GPa (b).

    图 12  (a) 75发的面密度; (b) 56发的面密度

    Fig. 12.  Areal densities of shot 75 (a) and shot 56 (b).

    图 13  75发的体密度

    Fig. 13.  Bulk density of shot 75.

    表 1  神光II升级装置紧贴条件下(微)层裂实验数据参数统计

    Table 1.  Experimental parameter statistics of (micro-) spall without vacuum gap conducted at the SGII-U facility.

    序号发次号ns激光能量/Jps激光能量/J计算峰值压强/Ga时间延迟/ns备注
    171501.38静态实验
    272106.7486.2822500ns能量偏低
    37340657.8120800ps能量过低
    474547529.624800
    576588556.7251000
    675663562.828800
    777809560.231600
    87884758832600
    980123162139900
    107935259241600
    下载: 导出CSV

    表 2  神光II升级装置非紧贴条件下(微)层裂实验数据参数统计

    Table 2.  Experimental parameter statistics of (micro-) spall with vacuum gap conducted at the SGII-U facility.

    序号发次号ns激光能量/Jps激光能量/J计算峰值压强/GPa时间延迟/ns
    164115.30456.803900
    266285.56520.93151500
    355644.07556.1027900
    456763.46576.9530600
    5621310.00515.2540600
    下载: 导出CSV
    Baidu
  • [1]

    王裴, 何安民, 邵建立, 孙海权, 陈大伟, 刘文斌, 刘军 2018 中国科学: 物理学 力学 天文学 48 094608

    Wang P, He A M, Shao J L, Sun H Q, Chen D W, Liu W B, Liu J 2018 Sci. China: Physica, Mechanica & Astronomica 48 094608

    [2]

    de Resseguier T, Signor L, Dragon A, Boustie M, Roy G, Llorca F 2007 J. Appl. Phys. 101 013506Google Scholar

    [3]

    de Resseguier T, Roland C, Prudhomme G, Lescoute E, Loison D, Mercier P 2016 J. Appl. Phys. 119 185108Google Scholar

    [4]

    de Resseguier T, Roland C, Lescoute E, Sollier A, Loison D, Berthe L, Prudhomme G, Mercier P 2015 AIP Conf. Proc. 1793 100025

    [5]

    de Resseguier T, Signor L, Dragon A, Severin P, Boustie M 2007 J. Appl. Phys. 102 073535Google Scholar

    [6]

    de Resseguier T, Signor L, Dragon A, Boustie M, Berthe L 2008 Appl. Phys. Lett. 92 131910Google Scholar

    [7]

    de Resseguier D, Signor L, Dragon A, Roy G 2010 Int. J. Fract. 163 109Google Scholar

    [8]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502Google Scholar

    [9]

    Franzkowiak J E, Prudhomme G, Mercier P, Lauriot S, Dubreuil E, Berthe L 2018 Rev. Sci. Instrum. 89 033901Google Scholar

    [10]

    Asay J R 1978 J. Appl. Phys. 49 6173Google Scholar

    [11]

    Morard G, de Resseguier T, Vinci T, Benuzzi-Mounaix A, Lescoute E, Brambrink E, Koenig M, Wei H, Diziere A, Occelli F, Fiquet G, Guyot F 2010 Phys. Rev. B 82 174102Google Scholar

    [12]

    de Resseguier T, Lescoute E, Sollier A, Prudhomme G, Mercier P 2014 J. Appl. Phys. 115 043525Google Scholar

    [13]

    Lescoute E, de Resseguier T, Chevalier J M, Boustie M, Cuq-Lelandais J P, Berthe L 2009 Appl. Phys. Lett. 95 211905Google Scholar

    [14]

    辛建婷, 谷渝秋, 李平, 罗炫, 蒋柏斌, 谭放, 韩丹, 巫殷忠, 赵宗清, 粟敬钦, 张保汉 2012 23 236201Google Scholar

    Xin J T, Gu Y Q, Li P, Luo X, Jiang B B, Tan F, Han D, Wu Y Z, Zhao Z Q, Su J Q, Zhang B H 2012 Acta Phys. Sin. 23 236201Google Scholar

    [15]

    He W H, Xin J T, Chu G B, Li J, Shao J L, Lu F, Shui M, Qian F, Cao L F, Wang P, Gu Y Q 2014 Optics Express 22 18924Google Scholar

    [16]

    He W H, Xin J T, Zhao Y Q, Chu G B, Xi T, Shui M, Lu F, Gu Y Q 2017 AIP Advances 7 065306Google Scholar

    [17]

    辛建婷, 赵永强, 储根柏, 席涛, 税敏, 范伟, 何卫华, 谷渝秋 2017 18 186201Google Scholar

    Xin J T, Zhao Y Q, Chu G B, Xi T, Shui M, Fan W, He W H, Gu Y Q 2017 Acta Phys. Sin. 18 186201Google Scholar

    [18]

    张林, 李英华, 程晋明, 李雪梅, 张祖根, 叶想平, 蔡灵仓 2016 强激光与粒子束 28 041003

    Zhang L, Li Y H, Cheng J M, Li X M, Zhang Z G, Ye X P, Cai L C 2016 High Power Laser and Particle Beams 28 041003

    [19]

    Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T, Gu Y Q 2018 Rev. Sci. Instrum. 89 115106Google Scholar

    [20]

    Marshall F J, McKenty P W, DelettrezJ A, Epstein R, Knauer J P, Smalyuk V A 2009 Phys. Rev. Lett. 102 185004Google Scholar

    [21]

    Dimonte G, Gore R, and Schneider M 1998 Phys. Rev. Lett. 80 1212Google Scholar

    [22]

    Buttler W T, Oro D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60Google Scholar

    [23]

    Dimonte G, Terrones G, Cherne F J, Ramaprabhu P 2013 J Appl. Phys. 113 024905Google Scholar

    [24]

    Dimonte G and Remington B 1993 Phys. Rev. Lett. 70 1806Google Scholar

    [25]

    Kuranz C C, Park H S, Huntington C M, Miles A R, Remington B A, Plewa T, Trantham M R, Robey H F, Shvarts D, Shimony A, Raman K, MacLaren S, Wan W C, Doss F W, Kline J, Flippo K A, Malamud G, Handy T A, Prisbrey S, Krauland C M, Klein S R, Harding E C, Wallace R, Grosskopf M J, Marion D C, Kalantar D, Giraldez E, Drake R P 2018 Nature Communications 9 1564Google Scholar

  • [1] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法.  , 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [2] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究.  , 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [3] 辛建婷, 赵永强, 储根柏, 席涛, 税敏, 范伟, 何卫华, 谷渝秋. 强激光加载下锡材料微喷颗粒与气体混合回收实验研究及颗粒度分析.  , 2017, 66(18): 186201. doi: 10.7498/aps.66.186201
    [4] 陈永涛, 洪仁楷, 陈浩玉, 任国武. 熔化状态下金属样品表面的微喷射问题.  , 2016, 65(2): 026201. doi: 10.7498/aps.65.026201
    [5] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究.  , 2015, 64(1): 015201. doi: 10.7498/aps.64.015201
    [6] 尹剑, 陈绍华, 温成伟, 夏立东, 李海容, 黄鑫, 余铭铭, 梁建华, 彭述明. 玻璃微球内氘结晶行为研究.  , 2015, 64(1): 015202. doi: 10.7498/aps.64.015202
    [7] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究.  , 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [8] 沙莎, 陈志华, 薛大文, 张辉. 激波与SF6梯形气柱相互作用的数值模拟.  , 2014, 63(8): 085205. doi: 10.7498/aps.63.085205
    [9] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展.  , 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [10] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测.  , 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [11] 陈永涛, 任国武, 汤铁钢, 李庆忠, 王德田, 胡海波. 熔化前后Pb样品表面微喷射现象研究.  , 2012, 61(20): 206202. doi: 10.7498/aps.61.206202
    [12] 王裴, 孙海权, 邵建立, 秦承森, 李欣竹. 微喷颗粒与气体混合过程的数值模拟研究.  , 2012, 61(23): 234703. doi: 10.7498/aps.61.234703
    [13] 辛建婷, 谷渝秋, 李平, 罗炫, 蒋柏斌, 谭放, 韩丹, 巫殷忠, 赵宗清, 粟敬钦, 张保汉. 强激光加载下金属材料微喷回收诊断.  , 2012, 61(23): 236201. doi: 10.7498/aps.61.236201
    [14] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究.  , 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [15] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究.  , 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [16] 赵永志, 张宪旗, 刘延雷, 郑津洋. 滚筒内非等粒径二元颗粒体系增混机理研究.  , 2009, 58(12): 8386-8393. doi: 10.7498/aps.58.8386
    [17] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究.  , 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究.  , 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究.  , 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [20] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究.  , 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
计量
  • 文章访问数:  7064
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-27
  • 修回日期:  2019-02-18
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回
Baidu
map