Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in high spatiotemporal resolution fluorescence microscopic imaging technique based on point scanning

Pan Bin-Xiong Gong Cheng Zhang Peng Liu Zi-Ye Pi Peng-Jian Chen Wang Huang Wen-Qiang Wang Bao-Ju Zhan Qiu-Qiang

Citation:

Advances in high spatiotemporal resolution fluorescence microscopic imaging technique based on point scanning

Pan Bin-Xiong, Gong Cheng, Zhang Peng, Liu Zi-Ye, Pi Peng-Jian, Chen Wang, Huang Wen-Qiang, Wang Bao-Ju, Zhan Qiu-Qiang
PDF
HTML
Get Citation
  • Laser point-scanning fluorescence microscopy serves as an indispensable tool in the life science research, owing to its merits of excellent resolution, high sensitivity, remarkable specificity, three-dimensional optical-sectioning capability, and dynamic imaging. However, conventional laser point-scanning fluorescence microscopy confronts a series of challenges in the rapidly evolving field of life sciences, because of the limitations imposed by optical diffraction and point scanning detection. Over the past two decades, substantial advancements have been made in super-resolution fluorescence microscopic imaging techniques. Researchers have developed various high spatial and temporal resolution point-scanning microtechniques, which hold great significance for biological optical imaging and other relevant applications. Regrettably, there are still few review articles covering the recent progress of this field. It is essential to provide a comprehensive review of laser point-scanning fluorescence microscopic techniques for their future developments and trends. In this article, the basic principles and recent advances in different point-scanning fluorescence microscopy imaging techniques are introduced from the perspectives of temporal resolution and spatial resolution, and the progress and applications of high spatio-temporal resolution microscopic imaging techniques based on point-scanning mode are summarized. Finally, the development trends and challenges of high spatio-temporal resolution point scanning fluorescence microscopic imaging technique are discussed.
      Corresponding author: Wang Bao-Ju, baoju.wang@m.scnu.edu.cn ; Zhan Qiu-Qiang, zhanqiuqiang@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62335008, 62122028, 11974123, 62105106), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant Nos. 2023B1515040018, 2022A1515011395), the Basic and Applied Basic Research Foundation of Guangzhou, China (Grant No. 202201010376), and the China Postdoctoral Science Foundation (Grant Nos. 2021M691089, 2023T160237).
    [1]

    Abee E 1873 Arch. f. Mikr. Anat. 9 413

    [2]

    赵光远, 郑程, 方月, 匡翠方, 刘旭 2017 66 148702Google Scholar

    Zhao G Y, Zheng C, Fang Y, Kuang C F, Liu X 2017 Acta Phys. Sin. 66 148702Google Scholar

    [3]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [4]

    Rust M J, Bates M, Zhuang X W 2006 Nat. Methods 3 793Google Scholar

    [5]

    Gustafsson M G 2000 J. Microsc. 198 82Google Scholar

    [6]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [7]

    Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel F C 2010 Nano Lett. 10 4756Google Scholar

    [8]

    Jungmann R, Avendaño M S, Woehrstein J B, Dai M J, Shih W M, Yin P 2014 Nat. Methods 11 313Google Scholar

    [9]

    Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen G P C 2019 Nat. Cell Biol. 21 72Google Scholar

    [10]

    Huang X S, Fan J C, Li L J, Liu H S, Wu R L, Wu Y, Wei L S, Mao H, Lal A, Xi P, Tang L Q, Zhang Y F, Liu Y M, Tan S, Chen L Y 2018 Nat. Biotechnol. 36 451Google Scholar

    [11]

    Shao L, Kner P, Rego E H, Gustafsson M G L 2011 Nat. Methods 8 1044Google Scholar

    [12]

    Nägerl U V, Willig K I, Hein B, Hell S W, Bonhoeffer T 2008 Proc. Natl. Acad. Sci. U. S. A. 105 18982Google Scholar

    [13]

    Wildanger D, Medda R, Kastrup L, Hell S 2009 J. Microsc. 236 35Google Scholar

    [14]

    Nwaneshiudu A, Kuschal C, Sakamoto F H, Anderson R R, Schwarzenberger K, Young R C 2012 J. Invest. Dermatol. 132 1Google Scholar

    [15]

    Wilson T 1989 J. Microsc. 154 143Google Scholar

    [16]

    Pawley J 2006 Handbook of Biological Confocal Microscopy (Vol. 236) (Berlin: Springer Science & Business Media

    [17]

    Muller M 2006 Introduction to Confocal Fluorescence Microscopy (Vol. 69) (Bellingham: SPIE Press

    [18]

    Sticker M, Elsässer R, Neumann M, Wolff H 2020 J. Microsc. 28 36Google Scholar

    [19]

    Sheppard C R 1988 Optik (Stuttgart) 80 53

    [20]

    Huff J 2015 Nat. Methods 12 iGoogle Scholar

    [21]

    Müller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101Google Scholar

    [22]

    York A G, Parekh S H, Dalle Nogare D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749Google Scholar

    [23]

    Ingaramo M, York A G, Wawrzusin P, Milberg O, Hong A, Weigert R, Shroff H, Patterson G H 2014 Proc. Natl. Acad. Sci. U. S. A. 111 5254Google Scholar

    [24]

    Wu Y C, Shroff H 2018 Nat. Methods 15 1011Google Scholar

    [25]

    Qin S, Isbaner S, Gregor I, Enderlein J 2021 Nat. Protoc. 16 164Google Scholar

    [26]

    Gräf R, Rietdorf J, Zimmermann T 2005 Microscopy Techniques (Berlin:Springer) -/- 57

    [27]

    Toomre D, Pawley J B 2006 Handbook of Biological Confocal Microscopy (Boston: Springer US) p221

    [28]

    Inoué S, Inoué T 2002 Cell Biological Applications of Confocal Microscopy(San Diego: Academic Press) p88

    [29]

    Wang E, Babbey C, Dunn K W 2005 J. Microsc. 218 148Google Scholar

    [30]

    Enoki R, Ono D, Hasan M T, Honma S, Honma K I 2012 J. Neurosci. Methods 207 72Google Scholar

    [31]

    Abreu-Blanco M T, Verboon J M, Parkhurst S M 2011 J. Cell Biol. 193 455Google Scholar

    [32]

    York A G, Chandris P, Nogare D D, Head J, Wawrzusin P, Fischer R S, Chitnis A, Shroff H 2013 Nat. Methods 10 1122Google Scholar

    [33]

    Schulz O, Pieper C, Clever M, Pfaff J, Ruhlandt A, Kehlenbach R H, Wouters F S, Großhans J, Bunt G, Enderlein J 2013 Proc. Natl. Acad. Sci. U. S. A. 110 21000Google Scholar

    [34]

    Xu Y Z, Xu R H, Wang Z, Zhou Y, Shen Q F, Ji W C, Dang D F, Meng L J, Tang B Z 2021 Chem. Soc. Rev. 50 667Google Scholar

    [35]

    Vicidomini G, Bianchini P, Diaspro A 2018 Nat. Methods 15 173Google Scholar

    [36]

    Westphal V, Hell S W 2005 Phys. Rev. Lett. 94 143903Google Scholar

    [37]

    Wildanger D, Patton B R, Schill H, Marseglia L, Hadden J, Knauer S, Schönle A, Rarity J G, O'Brien J L, Hell S W 2012 Adv. Mater. 24 OP309Google Scholar

    [38]

    Wäldchen S, Lehmann J, Klein T, Van De Linde S, Sauer M 2015 Sci. Rep. 5 1Google Scholar

    [39]

    Hell S W, Kroug M 1995 Appl. Phys. B 60 495Google Scholar

    [40]

    Bretschneider S, Eggeling C, Hell S W 2007 Phys. Rev. Lett. 98 218103Google Scholar

    [41]

    Göttfert F, Pleiner T, Heine J, Westphal V, Görlich D, Sahl S J, Hell S W 2017 Proc. Natl. Acad. Sci. U. S. A. 114 2125Google Scholar

    [42]

    Heine J, Reuss M, Harke B, D’Este E, Sahl S J, Hell S W 2017 Proc. Natl. Acad. Sci. U. S. A. 114 9797Google Scholar

    [43]

    Kuang C F, Li S, Liu W, Hao X, Gu Z T, Wang Y F, Ge J H, Li H F, Liu X 2013 Sci. Rep. 3 1441Google Scholar

    [44]

    Huang B R, Wu Q S, Peng X Y, Yao L Q, Peng D F, Zhan Q Q 2018 Nanoscale 10 21025Google Scholar

    [45]

    Moeyaert B, Dedecker P 2014 Photoswitching Proteins: Methods and Protocols(New York: Humana Press) p261

    [46]

    Grotjohann T, Testa I, Leutenegger M, Bock H, Urban N T, Lavoie-Cardinal F, Willig K I, Eggeling C, Jakobs S, Hell S W 2011 Nature 478 204Google Scholar

    [47]

    Wang N, Kobayashi T 2014 Opt. Express 22 28819Google Scholar

    [48]

    Wang N, Kobayashi T 2015 Opt. Express 23 13704Google Scholar

    [49]

    Zhao G Y, Kuang C F, Ding Z H, Liu X 2016 Opt. Express 24 23596Google Scholar

    [50]

    Hell S W, Jakobs S, Kastrup L 2003 Appl. Phys. A 77 859Google Scholar

    [51]

    Sharma R, Singh M, Sharma R 2020 Spectrochim. Acta Part A 231 117715Google Scholar

    [52]

    Grotjohann T, Testa I, Reuss M, Brakemann T, Eggeling C, Hell S W, Jakobs S 2012 Elife 1 e00248Google Scholar

    [53]

    Balzarotti F, Eilers Y, Gwosch K C, Gynnå A H, Westphal V, Stefani F D, Elf J, Hell S W 2017 Science 355 606Google Scholar

    [54]

    Gwosch K C, Pape J K, Balzarotti F, Hoess P, Ellenberg J, Ries J, Hell S W 2020 Nat. Methods 17 217Google Scholar

    [55]

    Weber M, von der Emde H, Leutenegger M, Gunkel P, Sambandan S, Khan T A, Keller-Findeisen J, Cordes V C, Hell S W 2023 Nat. Biotechnol. 41 569Google Scholar

    [56]

    Wu R T, Zhan Q Q, Liu H C, Wen X Y, Wang B J, He S L 2015 Opt. Express 23 32401Google Scholar

    [57]

    Zhan Q Q, Liu H C, Wang B J, Wu Q S, Pu R, Zhou C, Huang B R, Peng X Y, Ågren H, He S L 2017 Nat. Commun. 8 1058Google Scholar

    [58]

    Liu Y J, Lu Y Q, Yang X S, Zheng X L, Wen S H, Wang F, Vidal X, Zhao J B, Liu D M, Zhou Z G, Ma C S, Zhou J J, Piper J A, Xi P, Jin D Y 2017 Nature 543 229Google Scholar

    [59]

    Guo X, Pu R, Zhu Z M, Qiao S Q, Liang Y S, Huang B R, Liu H C, Labrador-Páez L, Kostiv U, Zhao P, Wu Q S, Widengren J, Zhan Q Q 2022 Nat. Commun. 13 2843Google Scholar

    [60]

    Pu R, Zhan Q Q, Peng X Y, Liu S Y, Guo X, Liang L L, Qin X, Zhao Z W, Liu X 2022 Nat. Commun. 13 6636Google Scholar

    [61]

    Liang Y S, Zhu Z M, Qiao S Q, Guo X, Pu R, Tang H, Liu H C, Dong H, Peng T T, Sun L-D, Widengren J, Zhan Q Q 2022 Nat. Nanotechnol. 17 524Google Scholar

    [62]

    Wu Q S, Huang B R, Peng X Y, He S L, Zhan Q Q 2017 Opt. Express 25 30885Google Scholar

    [63]

    Chen C C, Wang F, Wen S H, Su Q P, Wu M C, Liu Y T, Wang B M, Li D, Shan X C, Kianinia M, Aharonovich I, Toth I, Jackson M S, Xi P, Jin D Y 2018 Nat. Commun. 9 3290Google Scholar

    [64]

    Denkova D, Ploschner M, Das M, Parker L M, Zheng X, Lu Y, Orth A, Packer N H, Piper J A 2019 Nat. Commun. 10 3695Google Scholar

    [65]

    Lee C, Xu E Z, Liu Y, Teitelboim A, Yao K, Fernandez-Bravo A, Kotulska A M, Nam S H, Suh Y D, Bednarkiewicz A 2021 Nature 589 230Google Scholar

    [66]

    Klar T A, Jakobs S, Dyba M, Egner A, Hell S W 2000 Proc. Natl. Acad. Sci. U. S. A. 97 8206Google Scholar

    [67]

    Harke B, Ullal C K, Keller J, Hell S W 2008 Nano Lett. 8 1309Google Scholar

    [68]

    Gould T J, Burke D, Bewersdorf J, Booth M J 2012 Opt. Express 20 20998Google Scholar

    [69]

    Lenz M O, Sinclair H G, Savell A, Clegg J H, Brown A C, Davis D M, Dunsby C, Neil M A, French P M 2013 J. Biophotonics 1 29Google Scholar

    [70]

    Schmidt R, Wurm C A, Jakobs S, Engelhardt J, Egner A, Hell S W 2008 Nat. Methods 5 539Google Scholar

    [71]

    Chmyrov A, Keller J, Grotjohann T, Ratz M, d'Este E, Jakobs S, Eggeling C, Hell S W 2013 Nat. Methods 10 737Google Scholar

    [72]

    Böhm U, Hell S W, Schmidt R 2016 Nat. Commun. 7 10504Google Scholar

    [73]

    Hao X, Allgeyer E S, Lee D R, Antonello J, Watters K, Gerdes J A, Schroeder L K, Bottanelli F, Zhao J, Kidd P 2021 Nat. Methods 18 688Google Scholar

    [74]

    Staudt T, Engler A, Rittweger E, Harke B, Engelhardt J, Hell S W 2011 Opt. Express 19 5644Google Scholar

    [75]

    Dreier J, Castello M, Coceano G, Cáceres R, Plastino J, Vicidomini G, Testa I 2019 Nat. Commun. 10 556Google Scholar

    [76]

    Alvelid J, Damenti M, Sgattoni C, Testa I 2022 Nat. Methods 19 1268Google Scholar

    [77]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716Google Scholar

    [78]

    Hofmann M, Eggeling C, Jakobs S, Hell S W 2005 Proc. Natl. Acad. Sci. U. S. A. 102 17565Google Scholar

    [79]

    Brakemann T, Stiel A C, Weber G, Andresen M, Testa I, Grotjohann T, Leutenegger M, Plessmann U, Urlaub H, Eggeling C 2011 Nat. Biotechnol. 29 942Google Scholar

    [80]

    Bergermann F, Alber L, Sahl S J, Engelhardt J, Hell S W 2015 Opt. Express 23 211Google Scholar

    [81]

    Boden A, Pennacchietti F, Coceano G, Damenti M, Ratz M, Testa I 2021 Nat. Biotechnol. 39 609Google Scholar

    [82]

    Wang H D, Rivenson Y, Jin Y Y, Wei Z S, Gao R, Günaydın H, Bentolila L A, Kural C, Ozcan A 2019 Nat. Methods 16 103Google Scholar

    [83]

    Li M, Shan H, Pryshchep S, Lopez M M, Wang G 2020 J. Nanophotonics 14 016009Google Scholar

    [84]

    Chen J J, Sasaki H, Lai H Y, Su Y J, Liu J M, Wu Y C, Zhovmer A, Combs C A, Rey-Suarez I, Chang H Y, Huang C C, Li X S, Guo M, Nizambad S, Upadhyaya A, Lee S J, Lucas L A, Shroff H 2021 Nat. Methods 18 678Google Scholar

    [85]

    Ebrahimi V, Stephan T, Kim J, Carravilla P, Eggeling C, Jakobs S, Han K Y 2023 bioRxiv 2023.01. 26.525571

    [86]

    Matthews T E, Piletic I R, Selim M A, Simpson M J, Warren W S 2011 Sci. Transl. Med. 3 71ra15Google Scholar

    [87]

    Simpson M J, Wilson J W, Robles F E, Dall C P, Glass K, Simon J D, Warren W S 2014 J. Phys. Chem. A 118 993Google Scholar

    [88]

    Simpson M J, Wilson J W, Phipps M A, Robles F E, Selim M A, Warren W S 2013 J. Invest. Dermatol. 133 1822Google Scholar

    [89]

    Massaro E S, Hill A H, Grumstrup E M 2016 ACS Photonics 3 501Google Scholar

  • 图 1  宽场和共聚焦显微成像技术对比 (a) 宽场显微镜系统简化图; (b) 宽场显微镜荧光信号采集方式[18]; (c) 共聚焦显微镜系统简化图; (d) 共聚焦显微镜荧光信号采集方式[18]; (e) 二维切面图对比[18]; (f) 三维重构图对比[18]

    Figure 1.  Comparison of wide-field and confocal microscopy: (a) Simplified system schematic of wide-field microscopy; (b) fluorescent signal acquisition of wide-field microscopy[18]; (c) simplified system schematic of confocal microscopy; (d) fluorescent signal acquisition of confocal microscopy[18]; (e) comparison of two-dimensional section images[18]; (f) comparison of three-dimensional reconstruction images[18].

    图 2  基于多焦点阵列的快速成像技术示意图 (a), (b) 像素重定位原理[24,25]; (c) 共聚焦显微镜和ISM对100 nm直径荧光球的成像对比[21]; (d) MSIM照明系统[22]; (e) MSIM和宽场显微镜的活细胞双色成像对比[22]; (f) MSIM的活细胞三维成像[22]

    Figure 2.  Schematic diagram of fast imaging technology based on multifocus array: (a), (b) Principle of pixel reassignment[24,25]; (c) imaging comparison of confocal microscope and ISM on 100 nm diameter fluorescent spheres[21]; (d) illumination system for MSIM[22]; (e) dual-color imaging comparison of MSIM and wide-field microscope on live-cell[22]; (f) 3D imaging of live cells by MSIM[22].

    图 3  基于微透镜阵列的快速成像技术示意图 (a) 转盘共聚焦系统简化图; (b) 实现Instant-SIM的关键步骤[32]; (c) Instant-SIM和转盘共聚焦显微镜的活细胞双色成像对比[32]

    Figure 3.  Schematic diagram of fast imaging technology based on microlens array: (a) Simplified schematic of the spinning disk confocal system; (b) key steps in implementing Instant-SIM[32]; (c) dual-color imaging comparison of Instant-SIM and spinning disk confocal microscope on live-cell[32].

    图 4  点扫描超分辨成像技术示意图 (a) STED原理图; (b) STED在NV色心上实现2.4 nm分辨率[37]; (c) FED原理图[43]; (d) 单颗粒FED成像[44]; (e) RESOLFT原理图[45]; (f)共聚焦显微镜和RESOLFT的细胞成像对比[46]

    Figure 4.  Schematic diagram of point scanning super-resolution imaging technology: (a) STED schematic; (b) STED achieves 2.4 nm resolution on NV point[37]; (c) FED schematic[43]; (d) UCNPs-FED single particle imaging[44]; (e) RESOLFT schematic[45]; (f) cell imaging comparison of confocal microscope and RESOLFT[46].

    图 5  上转换超分辨成像技术示意图 (a) 交叉弛豫传能荧光损耗机制[57]; (b) 上转换STED超分辨成像结果[57]; (c) 表面迁移荧光损耗机制[60]; (d) SMED超分辨成像结果[60]; (e) Yb3+/Pr3+共掺杂纳米颗粒的光子雪崩机制[61]; (f) 光子雪崩超分辨成像结果[61]

    Figure 5.  Schematic diagram of up-conversion super-resolution imaging technology: (a) Cross-relaxation energy transfer fluorescence loss mechanism[57]; (b) up-conversion STED super-resolution imaging results[57]; (c) surface migration fluorescence loss mechanism[60]; (d) SMED super-resolution imaging results[60]; (e) photon avalanche mechanism of Yb3+/Pr3+ co-doped nanoparticles[61]; (f) photon avalanche super-resolution Resolution imaging results[61].

    图 6  点扫描三维超分辨成像技术示意图 (a) 3D-STED PSF xz平面强度分布; (b) 3D-STED系统简化图[67]; (c) 单SLM实现AO-3DSTED 装置[69]; (d) 共聚焦显微镜和3D-STED对20 nm直径荧光球的成像对比[67]; (e) AO-isoSTED系统简化图以及PSF xz平面强度分布[73]; (f) 共聚焦显微镜和AO-isoSTED对细胞微管的成像对比[73]

    Figure 6.  Schematic diagram of point scanning 3D super-resolution imaging technology: (a) 3D-STED PSF xz plane intensity distribution; (b) simplified schematic of 3D-STED system[67]; (c) AO-3DSTED with a single SLM[69]; (d) imaging comparison of confocal microscope and 3D-STED on 20 nm diameter fluorescent spheres[67]; (e) simplified schematic of AO-isoSTED system and PSF xz plane intensity distribution[73]; (f) imaging comparison of confocal microscope and AO-isoSTED on cell microtubules[73].

    图 7  智能扫描超分辨成像技术示意图 (a) 智能RESOLFT扫描机制[75]; (b) etSTED实验方案[76]

    Figure 7.  Schematic diagram of intelligent scanning super-resolution imaging technology: (a) Smart RESOLFT scanning mechanism[75]; (b) etSTED experimental scheme[76].

    图 8  并行扫描超分辨成像技术示意图 (a) pRESOLFT 系统简化图[71]; (b) pRESOLFT “ON” 状态下不同 I/Is 的二维强度分布图[71]; (c) pRESOLFT 纳米显微镜的活细胞成像[71]; (d) 3D-pRESOLFT 三种模式的驻波叠加产生蜂窝状照明阵列[81]; (e) 3D-pRESOLFT 纳米显微镜的活细胞成像[81]

    Figure 8.  Schematic diagram of parallel scanning super-resolution imaging technology: (a) Simplified schematic of pRESOLFT system[71]; (b) 2D profiles of the on-state probability distribution for different I/Is [71]; (c) live-cell imaging with pRESOLFT nanoscopy[71]; (d) three patterns of standing waves are superimposed to create a honeycomb lighting array in 3D-pRESOLFT[81]; (e) live-cell imaging with 3D-pRESOLFT nanoscopy[81].

    图 9  深度学习助力超高时空分辨率成像示意图 (a) 深度学习提高图像分辨率; (b) GAN网络训练结果[82]; (c) RCAN网络训练结果[84]; (d) Unet-RCAN网络训练结果[85]

    Figure 9.  Schematic diagram of deep learning-assisted ultra-high spatial-temporal resolution imaging: (a) Deep learning improves image resolution; (b) GAN network training results[82]; (c) RCAN network training results[84]; (d) Unet-RCAN network training results[85]

    表 1  SMLM, SIM, STED超分辨技术的关键性能指标对比

    Table 1.  Technical comparison of SMLM, SIM, STED super-resolution microscopy.

    技术 横向分辨率/nm 轴向分辨率/nm 二维时间
    分辨率
    激光类型 激光强度/
    (W·cm–2)
    激光波段 荧光漂白
    程度
    重构算法
    SMLM[3,4,7,8] 10—30 40—70 1—10 min
    (20 μm×20 μm)
    CW ~1000 可见光 ☆☆☆ 需要
    SIM[10,11] 90—110 ~300 1—10 ms
    (40 μm×40 μm)
    CW 1—100 可见光 ☆☆ 需要
    STED[6,12,13] 20—50 40—150 1—20 s
    (50 μm×50 μm)
    fs/ps 109—1010 可见光 ☆☆☆☆☆ 无需
    DownLoad: CSV

    表 2  不同点扫描超分辨成像技术的关键性能指标对比

    Table 2.  Overview of point-scanning super-resolution fluorescence microscopy techniques.

    技术 横向分辨率
    /nm
    轴向分辨率
    /nm
    二维时间分辨率 激光类型 激光强度 荧光漂白
    程度
    激光
    波段
    组织成像
    深度
    重构
    算法
    Confocal[19] 200 500 0.2—2.0 s
    (50 μm×50 μm)
    CW 40 μW—1 mW ☆☆☆ 可见光 中等 无需
    Airyscan[20] 120—140 400 0.2—1.0 s
    (50 μm×50 μm)
    CW 4—20 μW ☆☆ 可见光 需要
    MSIM [22] 145 400 1 s
    (45.6 μm×45.6 μm)
    CW
    fs/ps
    1—25 μW
    1.1 W
    ☆☆ 可见光/
    近红外
    需要
    STED [6,12,13] 20—50 40—150 13 s
    (50 μm×50 μm)
    fs/ps 1—10 GW/cm2 ☆☆☆☆☆ 可见光 中等 无需
    UCNPs-STED
    (SMED[60])
    17 ~45 10—50 s
    (50 μm×50 μm)
    CW 18 kW/cm2 零漂白 近红外 无需
    RESOFLT[50,52] ~40 ~120 100 s
    (10 μm×10 μm)
    fs/ps 1 kW/cm2 ☆☆ 可见光 中等 无需
    pRESOFLT[71,81] ~80 ~80 0.4 s
    (10 μm×10 μm)
    fs/ps 1 kW/cm2 ☆☆ 可见光 很低 需要
    isoSTED[70,73] ~40 ~40 0.5—5.0 s
    (50 μm×50 μm)
    fs/ps 50—100 mW ☆☆☆☆☆ 可见光 中等 无需
    MINFLUX[53,54] 1—3 1—3 1—2 min
    (20 μm×20 μm)
    CW 10—50 kW/cm2 可见光 很低 需要
    MINSTED[55] 0.23 68 min
    (1.37 μm×1.37 μm)
    fs/ps 1.5 μW 可见光 很低 需要
    DownLoad: CSV
    Baidu
  • [1]

    Abee E 1873 Arch. f. Mikr. Anat. 9 413

    [2]

    赵光远, 郑程, 方月, 匡翠方, 刘旭 2017 66 148702Google Scholar

    Zhao G Y, Zheng C, Fang Y, Kuang C F, Liu X 2017 Acta Phys. Sin. 66 148702Google Scholar

    [3]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642Google Scholar

    [4]

    Rust M J, Bates M, Zhuang X W 2006 Nat. Methods 3 793Google Scholar

    [5]

    Gustafsson M G 2000 J. Microsc. 198 82Google Scholar

    [6]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780Google Scholar

    [7]

    Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel F C 2010 Nano Lett. 10 4756Google Scholar

    [8]

    Jungmann R, Avendaño M S, Woehrstein J B, Dai M J, Shih W M, Yin P 2014 Nat. Methods 11 313Google Scholar

    [9]

    Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen G P C 2019 Nat. Cell Biol. 21 72Google Scholar

    [10]

    Huang X S, Fan J C, Li L J, Liu H S, Wu R L, Wu Y, Wei L S, Mao H, Lal A, Xi P, Tang L Q, Zhang Y F, Liu Y M, Tan S, Chen L Y 2018 Nat. Biotechnol. 36 451Google Scholar

    [11]

    Shao L, Kner P, Rego E H, Gustafsson M G L 2011 Nat. Methods 8 1044Google Scholar

    [12]

    Nägerl U V, Willig K I, Hein B, Hell S W, Bonhoeffer T 2008 Proc. Natl. Acad. Sci. U. S. A. 105 18982Google Scholar

    [13]

    Wildanger D, Medda R, Kastrup L, Hell S 2009 J. Microsc. 236 35Google Scholar

    [14]

    Nwaneshiudu A, Kuschal C, Sakamoto F H, Anderson R R, Schwarzenberger K, Young R C 2012 J. Invest. Dermatol. 132 1Google Scholar

    [15]

    Wilson T 1989 J. Microsc. 154 143Google Scholar

    [16]

    Pawley J 2006 Handbook of Biological Confocal Microscopy (Vol. 236) (Berlin: Springer Science & Business Media

    [17]

    Muller M 2006 Introduction to Confocal Fluorescence Microscopy (Vol. 69) (Bellingham: SPIE Press

    [18]

    Sticker M, Elsässer R, Neumann M, Wolff H 2020 J. Microsc. 28 36Google Scholar

    [19]

    Sheppard C R 1988 Optik (Stuttgart) 80 53

    [20]

    Huff J 2015 Nat. Methods 12 iGoogle Scholar

    [21]

    Müller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101Google Scholar

    [22]

    York A G, Parekh S H, Dalle Nogare D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749Google Scholar

    [23]

    Ingaramo M, York A G, Wawrzusin P, Milberg O, Hong A, Weigert R, Shroff H, Patterson G H 2014 Proc. Natl. Acad. Sci. U. S. A. 111 5254Google Scholar

    [24]

    Wu Y C, Shroff H 2018 Nat. Methods 15 1011Google Scholar

    [25]

    Qin S, Isbaner S, Gregor I, Enderlein J 2021 Nat. Protoc. 16 164Google Scholar

    [26]

    Gräf R, Rietdorf J, Zimmermann T 2005 Microscopy Techniques (Berlin:Springer) -/- 57

    [27]

    Toomre D, Pawley J B 2006 Handbook of Biological Confocal Microscopy (Boston: Springer US) p221

    [28]

    Inoué S, Inoué T 2002 Cell Biological Applications of Confocal Microscopy(San Diego: Academic Press) p88

    [29]

    Wang E, Babbey C, Dunn K W 2005 J. Microsc. 218 148Google Scholar

    [30]

    Enoki R, Ono D, Hasan M T, Honma S, Honma K I 2012 J. Neurosci. Methods 207 72Google Scholar

    [31]

    Abreu-Blanco M T, Verboon J M, Parkhurst S M 2011 J. Cell Biol. 193 455Google Scholar

    [32]

    York A G, Chandris P, Nogare D D, Head J, Wawrzusin P, Fischer R S, Chitnis A, Shroff H 2013 Nat. Methods 10 1122Google Scholar

    [33]

    Schulz O, Pieper C, Clever M, Pfaff J, Ruhlandt A, Kehlenbach R H, Wouters F S, Großhans J, Bunt G, Enderlein J 2013 Proc. Natl. Acad. Sci. U. S. A. 110 21000Google Scholar

    [34]

    Xu Y Z, Xu R H, Wang Z, Zhou Y, Shen Q F, Ji W C, Dang D F, Meng L J, Tang B Z 2021 Chem. Soc. Rev. 50 667Google Scholar

    [35]

    Vicidomini G, Bianchini P, Diaspro A 2018 Nat. Methods 15 173Google Scholar

    [36]

    Westphal V, Hell S W 2005 Phys. Rev. Lett. 94 143903Google Scholar

    [37]

    Wildanger D, Patton B R, Schill H, Marseglia L, Hadden J, Knauer S, Schönle A, Rarity J G, O'Brien J L, Hell S W 2012 Adv. Mater. 24 OP309Google Scholar

    [38]

    Wäldchen S, Lehmann J, Klein T, Van De Linde S, Sauer M 2015 Sci. Rep. 5 1Google Scholar

    [39]

    Hell S W, Kroug M 1995 Appl. Phys. B 60 495Google Scholar

    [40]

    Bretschneider S, Eggeling C, Hell S W 2007 Phys. Rev. Lett. 98 218103Google Scholar

    [41]

    Göttfert F, Pleiner T, Heine J, Westphal V, Görlich D, Sahl S J, Hell S W 2017 Proc. Natl. Acad. Sci. U. S. A. 114 2125Google Scholar

    [42]

    Heine J, Reuss M, Harke B, D’Este E, Sahl S J, Hell S W 2017 Proc. Natl. Acad. Sci. U. S. A. 114 9797Google Scholar

    [43]

    Kuang C F, Li S, Liu W, Hao X, Gu Z T, Wang Y F, Ge J H, Li H F, Liu X 2013 Sci. Rep. 3 1441Google Scholar

    [44]

    Huang B R, Wu Q S, Peng X Y, Yao L Q, Peng D F, Zhan Q Q 2018 Nanoscale 10 21025Google Scholar

    [45]

    Moeyaert B, Dedecker P 2014 Photoswitching Proteins: Methods and Protocols(New York: Humana Press) p261

    [46]

    Grotjohann T, Testa I, Leutenegger M, Bock H, Urban N T, Lavoie-Cardinal F, Willig K I, Eggeling C, Jakobs S, Hell S W 2011 Nature 478 204Google Scholar

    [47]

    Wang N, Kobayashi T 2014 Opt. Express 22 28819Google Scholar

    [48]

    Wang N, Kobayashi T 2015 Opt. Express 23 13704Google Scholar

    [49]

    Zhao G Y, Kuang C F, Ding Z H, Liu X 2016 Opt. Express 24 23596Google Scholar

    [50]

    Hell S W, Jakobs S, Kastrup L 2003 Appl. Phys. A 77 859Google Scholar

    [51]

    Sharma R, Singh M, Sharma R 2020 Spectrochim. Acta Part A 231 117715Google Scholar

    [52]

    Grotjohann T, Testa I, Reuss M, Brakemann T, Eggeling C, Hell S W, Jakobs S 2012 Elife 1 e00248Google Scholar

    [53]

    Balzarotti F, Eilers Y, Gwosch K C, Gynnå A H, Westphal V, Stefani F D, Elf J, Hell S W 2017 Science 355 606Google Scholar

    [54]

    Gwosch K C, Pape J K, Balzarotti F, Hoess P, Ellenberg J, Ries J, Hell S W 2020 Nat. Methods 17 217Google Scholar

    [55]

    Weber M, von der Emde H, Leutenegger M, Gunkel P, Sambandan S, Khan T A, Keller-Findeisen J, Cordes V C, Hell S W 2023 Nat. Biotechnol. 41 569Google Scholar

    [56]

    Wu R T, Zhan Q Q, Liu H C, Wen X Y, Wang B J, He S L 2015 Opt. Express 23 32401Google Scholar

    [57]

    Zhan Q Q, Liu H C, Wang B J, Wu Q S, Pu R, Zhou C, Huang B R, Peng X Y, Ågren H, He S L 2017 Nat. Commun. 8 1058Google Scholar

    [58]

    Liu Y J, Lu Y Q, Yang X S, Zheng X L, Wen S H, Wang F, Vidal X, Zhao J B, Liu D M, Zhou Z G, Ma C S, Zhou J J, Piper J A, Xi P, Jin D Y 2017 Nature 543 229Google Scholar

    [59]

    Guo X, Pu R, Zhu Z M, Qiao S Q, Liang Y S, Huang B R, Liu H C, Labrador-Páez L, Kostiv U, Zhao P, Wu Q S, Widengren J, Zhan Q Q 2022 Nat. Commun. 13 2843Google Scholar

    [60]

    Pu R, Zhan Q Q, Peng X Y, Liu S Y, Guo X, Liang L L, Qin X, Zhao Z W, Liu X 2022 Nat. Commun. 13 6636Google Scholar

    [61]

    Liang Y S, Zhu Z M, Qiao S Q, Guo X, Pu R, Tang H, Liu H C, Dong H, Peng T T, Sun L-D, Widengren J, Zhan Q Q 2022 Nat. Nanotechnol. 17 524Google Scholar

    [62]

    Wu Q S, Huang B R, Peng X Y, He S L, Zhan Q Q 2017 Opt. Express 25 30885Google Scholar

    [63]

    Chen C C, Wang F, Wen S H, Su Q P, Wu M C, Liu Y T, Wang B M, Li D, Shan X C, Kianinia M, Aharonovich I, Toth I, Jackson M S, Xi P, Jin D Y 2018 Nat. Commun. 9 3290Google Scholar

    [64]

    Denkova D, Ploschner M, Das M, Parker L M, Zheng X, Lu Y, Orth A, Packer N H, Piper J A 2019 Nat. Commun. 10 3695Google Scholar

    [65]

    Lee C, Xu E Z, Liu Y, Teitelboim A, Yao K, Fernandez-Bravo A, Kotulska A M, Nam S H, Suh Y D, Bednarkiewicz A 2021 Nature 589 230Google Scholar

    [66]

    Klar T A, Jakobs S, Dyba M, Egner A, Hell S W 2000 Proc. Natl. Acad. Sci. U. S. A. 97 8206Google Scholar

    [67]

    Harke B, Ullal C K, Keller J, Hell S W 2008 Nano Lett. 8 1309Google Scholar

    [68]

    Gould T J, Burke D, Bewersdorf J, Booth M J 2012 Opt. Express 20 20998Google Scholar

    [69]

    Lenz M O, Sinclair H G, Savell A, Clegg J H, Brown A C, Davis D M, Dunsby C, Neil M A, French P M 2013 J. Biophotonics 1 29Google Scholar

    [70]

    Schmidt R, Wurm C A, Jakobs S, Engelhardt J, Egner A, Hell S W 2008 Nat. Methods 5 539Google Scholar

    [71]

    Chmyrov A, Keller J, Grotjohann T, Ratz M, d'Este E, Jakobs S, Eggeling C, Hell S W 2013 Nat. Methods 10 737Google Scholar

    [72]

    Böhm U, Hell S W, Schmidt R 2016 Nat. Commun. 7 10504Google Scholar

    [73]

    Hao X, Allgeyer E S, Lee D R, Antonello J, Watters K, Gerdes J A, Schroeder L K, Bottanelli F, Zhao J, Kidd P 2021 Nat. Methods 18 688Google Scholar

    [74]

    Staudt T, Engler A, Rittweger E, Harke B, Engelhardt J, Hell S W 2011 Opt. Express 19 5644Google Scholar

    [75]

    Dreier J, Castello M, Coceano G, Cáceres R, Plastino J, Vicidomini G, Testa I 2019 Nat. Commun. 10 556Google Scholar

    [76]

    Alvelid J, Damenti M, Sgattoni C, Testa I 2022 Nat. Methods 19 1268Google Scholar

    [77]

    Bingen P, Reuss M, Engelhardt J, Hell S W 2011 Opt. Express 19 23716Google Scholar

    [78]

    Hofmann M, Eggeling C, Jakobs S, Hell S W 2005 Proc. Natl. Acad. Sci. U. S. A. 102 17565Google Scholar

    [79]

    Brakemann T, Stiel A C, Weber G, Andresen M, Testa I, Grotjohann T, Leutenegger M, Plessmann U, Urlaub H, Eggeling C 2011 Nat. Biotechnol. 29 942Google Scholar

    [80]

    Bergermann F, Alber L, Sahl S J, Engelhardt J, Hell S W 2015 Opt. Express 23 211Google Scholar

    [81]

    Boden A, Pennacchietti F, Coceano G, Damenti M, Ratz M, Testa I 2021 Nat. Biotechnol. 39 609Google Scholar

    [82]

    Wang H D, Rivenson Y, Jin Y Y, Wei Z S, Gao R, Günaydın H, Bentolila L A, Kural C, Ozcan A 2019 Nat. Methods 16 103Google Scholar

    [83]

    Li M, Shan H, Pryshchep S, Lopez M M, Wang G 2020 J. Nanophotonics 14 016009Google Scholar

    [84]

    Chen J J, Sasaki H, Lai H Y, Su Y J, Liu J M, Wu Y C, Zhovmer A, Combs C A, Rey-Suarez I, Chang H Y, Huang C C, Li X S, Guo M, Nizambad S, Upadhyaya A, Lee S J, Lucas L A, Shroff H 2021 Nat. Methods 18 678Google Scholar

    [85]

    Ebrahimi V, Stephan T, Kim J, Carravilla P, Eggeling C, Jakobs S, Han K Y 2023 bioRxiv 2023.01. 26.525571

    [86]

    Matthews T E, Piletic I R, Selim M A, Simpson M J, Warren W S 2011 Sci. Transl. Med. 3 71ra15Google Scholar

    [87]

    Simpson M J, Wilson J W, Robles F E, Dall C P, Glass K, Simon J D, Warren W S 2014 J. Phys. Chem. A 118 993Google Scholar

    [88]

    Simpson M J, Wilson J W, Phipps M A, Robles F E, Selim M A, Warren W S 2013 J. Invest. Dermatol. 133 1822Google Scholar

    [89]

    Massaro E S, Hill A H, Grumstrup E M 2016 ACS Photonics 3 501Google Scholar

  • [1] Wei Qian-Yi, Ni Jie-Lei, Li Ling, Zhang Yu-Quan, Yuan Xiao-Cong, Min Chang-Jun. Research progress of ultra-high spatiotemporally resolved microscopy. Acta Physica Sinica, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [2] Xiang Peng-Cheng, Cai Cong-Bo, Wang Jie-Chao, Cai Shu-Hui, Chen Zhong. Super-resolved reconstruction method for spatiotemporally encoded magnetic resonance imaging based on deep neural network. Acta Physica Sinica, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [3] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [4] Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211712
    [5] Liu Xue-Ling, Tian Jin-Shou, Tian Li-Ping, Chen Ping, Zhang Min-Rui, Xue Yan-Hua, Li Ya-Hui, Fang Yu-Man, Xu Xiang-Yan, Liu Bai-Yu, Gou Yong-Sheng. A synchroscan streak tube with high deflection sensitivity. Acta Physica Sinica, 2021, 70(21): 218502. doi: 10.7498/aps.70.20210814
    [6] Yu Huan-Huan, Zhang Chen-Shuang, Lin Dan-Ying, Yu Bin, Qu Jun-Le. Two-photon multifocal structured light microscopy based on high-speed phase-type spatial light modulator. Acta Physica Sinica, 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [7] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [8] Gao Qiang, Li Xiao-Qiu, Zhou Zhi-Peng, Sun Lei. Far-field super-resolution scanning imaging based on fractal resonator. Acta Physica Sinica, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [9] Lin Dan-Ying, Qu Jun-Le. Recent progress on super-resolution imaging and correlative super-resolution microscopy. Acta Physica Sinica, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [10] Hu Rui-Xuan, Pan Bing-Yang, Yang Yu-Long, Zhang Wei-Hua. Brief retrospect of super-resolution optical microscopy techniques. Acta Physica Sinica, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [11] Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu. Progress of point-wise scanning superresolution methods. Acta Physica Sinica, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [12] Liu Hong-Ji, Liu Shuang-Long, Niu Han-Ben, Chen Dan-Ni, Liu Wei. A super-resolution infrared microscopy based on a doughnut pump beam. Acta Physica Sinica, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [13] Sheng Jie, Zhang Guo-Liang, Li Yu-Qiang, Zhu Tao, Jiang Zhong-Ying. Extreme pH-induced lateral reorganization of supported lipid bilayer by fluorescence microscope. Acta Physica Sinica, 2014, 63(6): 068702. doi: 10.7498/aps.63.068702
    [14] Wen Qiao, Wang Kai-Ge, Shao Yong-Hong, Qu Jun-Le, Niu Han-Ben. A nnovel wide field fluorescence sectioning microscope based on polarization filtering image enhancement and dynamic speckle illumination. Acta Physica Sinica, 2013, 62(3): 034203. doi: 10.7498/aps.62.034203
    [15] Lu Jing, Li Hao, He Yi, Shi Guo-Hua, Zhang Yu-Dong. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [16] Wang Xiao, Pan An-Lian, Liu Dan, Bai Yong-Qiang, Zhang Zhao-Hui, Zou Bing-Suo, Zhu Xing. Near-field detected photoluminescence spectra of CdS0.65Se0.35 nanoribbon at room temperature. Acta Physica Sinica, 2007, 56(11): 6352-6357. doi: 10.7498/aps.56.6352
    [17] WANG ZHEN-XIA, RUAN MEI-LING, YANG JIN-QING, WANG WEN-MIN, YU GUO-QING. INVESTIGATION OF THE NOVEL CARBON NANOSTRUCTURES BY HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [18] WANG ZHEN-XIA, HU JUN, WANG WEN-MIN, YU GUO-QING, RUAN MEI-LING. A HIGH RESOLUTION ELECTRON MICROSCOPY INVESTIGATION OF CURVATURE IN MULTILAYER GRAPHITE SHEETS. Acta Physica Sinica, 1998, 47(11): 1853-1857. doi: 10.7498/aps.47.1853
    [19] XU HUI-FANG, LUO GU-FENG, HU MEI-SHENG, CHEN JUN. HRTEM STUDY OF THE SUPERLATTICE ORTHOCLASE. Acta Physica Sinica, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [20] ZHANG SHU-YI, YU CHAO, MIAO YONG-ZHI, TANG ZHENG-YAN, GAO DUN-TANG. SCANNING PHOTOACOUSTIC MICROSCOPY. Acta Physica Sinica, 1982, 31(5): 704-708. doi: 10.7498/aps.31.704
Metrics
  • Abstract views:  4885
  • PDF Downloads:  127
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2023
  • Accepted Date:  23 August 2023
  • Available Online:  12 September 2023
  • Published Online:  20 October 2023

/

返回文章
返回
Baidu
map