Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical analysis and optimization of 2.8 μm lightly-erbium-doped fluoride fiber laser based on cascaded transition

Xia Wen-Xin Fu Shi-Jie Zhang Jun-Xiang Zhang Lu Sheng Quan Luo Xue-Wen Shi Wei Yao Jian-Quan

Citation:

Numerical analysis and optimization of 2.8 μm lightly-erbium-doped fluoride fiber laser based on cascaded transition

Xia Wen-Xin, Fu Shi-Jie, Zhang Jun-Xiang, Zhang Lu, Sheng Quan, Luo Xue-Wen, Shi Wei, Yao Jian-Quan
PDF
HTML
Get Citation
  • Er3+-doped ZBLAN fiber laser is a promising approach to producing 2.8 μm mid-infrared (MIR) laser. The long lifetime of the lower-laser-level 4I13/2 often results in serious self-terminating effect which harms the laser power and efficiency significantly, especially for the active fiber with low dopant concentration which is preferred for weak thermal issues but cannot depopulate the lower-laser-level effectively via the up-conversion process. The 1.6 μm lasing (4I13/2 4I15/2) in Er-ZBLAN fiber could deplete the population on 4I13/2. Therefore, cascaded 2.8 μm and 1.6 μm lasing in Er3+-doped ZBLAN fiber provides a promising solution to the self-termination effects on laser power scaling. Moreover, the 4I13/2 4I15/2 1.6 μm laser also has some overlap with the 4I13/2 4I9/2 excited state absorption (ESA) spectrum. The ions on the 4I9/2 level would then relax to the upper-laser-level of 2.8 μm lasing (4I11/2), and results in enhanced laser efficiency. In general, the 1.6 μm cascaded lasing in 2.8 μm Er-ZBLAN fiber laser involves both lasing and ESA. The two processes have different spectra and different influences on the 2.8 μm laser gain. Therefore, there should exist an optimal wavelength of the 1.6 μm laser, which would balance the two processes, ensuring the lower-laser-level depopulation while maximizing the ion recycling. Therefore, we develop a comprehensive numerical model of cascaded 2.8 μm and 1.6 μm lasers based on Er-ZBLAN fiber. After the numerical model is verified by the previous experimental results, the effects of MIR and 1.6 μm lasing wavelengths on the power and conversion efficiency of 2.8 μm laser are investigated in depth. The results show that a suitable trade-off between the two processes can be reached with the cascaded lasing wavelength of 1610 nm, for the optimized 2.8 μm laser power/efficiency. Moreover, the influence of 1.6 μm laser cavity feedback on the power/efficiency characteristics of the 2.8 μm laser is also investigated. It is found that the feedback at 1.6 μm is very low, even only 4% is provided by the Fresnel reflection of the fiber facet, which can effectively generate 1.6 μm laser and significantly improve the efficiency of 2.8 μm laser.
      Corresponding author: Sheng Quan, shengquan@tju.edu.cn ; Shi Wei, shiwei@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62375201, 62105240, 62075159, 61975146, 62275190), the Seed Foundation of Tianjin University, China (Grant No. 2023XPD-0020), and the Key R&D Program of Shandong Province, China (Grant Nos. 2020CXGC010104, 2021CXGC010202).
    [1]

    Picqué N, Hänsch T W 2019 Opt. Photonics News 30 26Google Scholar

    [2]

    Jackson S D, Lauto A 2002 Lasers Surg. Med. 30 184Google Scholar

    [3]

    Mahulikar S P, Sonawane H R, Arvind Rao G 2007 Prog. Aerosp. Sci. 43 218Google Scholar

    [4]

    Wu Y, Liang S, Fu Q, Bradley T D, Poletti F, Richardson D J, Xu L 2022 Opt. Lett. 47 3600Google Scholar

    [5]

    Su L B, Guo X S, Jiang D P, Wu Q H, Qin Z P, Xie G Q 2018 Opt. Express 26 5558Google Scholar

    [6]

    Yao Y, Hoffman A J, Gmachl C F 2012 Nature Photon. 6 432Google Scholar

    [7]

    Henderson-Sapir O, Munch J, Ottaway D J 2016 Opt. Express 24 6869Google Scholar

    [8]

    Quimby R S, Miniscalco W J 1989 Appl. Opt. 28 14Google Scholar

    [9]

    Fortin V, Bernier M, Bah S T, Vallée R 2015 Opt. Lett. 40 2882Google Scholar

    [10]

    Goya K, Uehara H, Konishi D, Sahara R, Murakami M, Tokita S 2019 Appl. Phys. Express 12 102007Google Scholar

    [11]

    Aydin Y O, Fortin V, Vallée R, Bernier M 2018 Opt. Lett. 43 4542Google Scholar

    [12]

    张钧翔, 付士杰, 盛泉, 夏文新, 张露, 史伟, 姚建铨 2023 中国激光 50 0715001Google Scholar

    Zhang J X, Fu S J, Sheng Q, Xia W X, Zhang L, Shi W, Yao J Q 2023 Chin. J. Lasers 50 0715001Google Scholar

    [13]

    Jackson S D, Pollnau M, Li J F 2011 IEEE J. Quantum Electron. 47 471Google Scholar

    [14]

    Li J F, Wang L L, Luo H Y, Xie J T, Liu Y 2016 IEEE Photonic. Tech. L. 28 673Google Scholar

    [15]

    Aydin Y O, Fortin V, Maes F, Jobin F, Jackson S D, Vallée R, Bernier M 2017 Optica 4 235Google Scholar

    [16]

    Li J F, Luo H Y, Liu Y, Zhang L, Jackson S D 2014 IEEE J. Sel. Top. Quantum Electron. 20 15Google Scholar

    [17]

    Guo C Y, Lin J P, Tang Z Y, Li K Y, Tu L S, Wang J C, Liu X, Ruan S C 2022 J. Light. Technol. 40 4397Google Scholar

    [18]

    Wang B, Cheng L H, Zhong H Y, Sun J S, Tian Y, Zhang X Q, Chen B J 2009 Opt. Mater. 31 1658Google Scholar

    [19]

    Quimby R S, Miniscalco W J, Thompson B 1992 Proc. SPIE Fiber Laser Sources and Amplifiers III 17 WE3Google Scholar

    [20]

    Ivanova S, PelléF 2009 J. Opt. Soc. Am. B 26 1930Google Scholar

    [21]

    Zhou K M, Zhang L, Chen X F, Mezentsev V, Bennion I 2010 Int. J. Smart Nano Mater. 1 237Google Scholar

  • 图 1  基于掺铒ZBLAN光纤的2.8 μm和1.6 μm激光级联跃迁能级示意图

    Figure 1.  Energy level diagram of Er3+-doped ZBLAN fiber lasers relevant to cascaded transitions of 2.8 μm and 1.6 μm lasers.

    图 2  基于单谐振腔的2.8 μm中红外光纤激光器结构示意图

    Figure 2.  Schematic of mid-infrared fiber laser with a single 2.8 μm laser cavity.

    图 3  10 m/20 m/30 m光纤长度下激光输出功率随泵浦功率的变化 (a)考虑ESA1; (b)不考虑ESA1

    Figure 3.  Calculation results of 2.8 μm output power as a function of 976 nm launched pump power with 10 m/20 m/30 m fiber lengths: (a) With ESA1; (b) without ESA1.

    图 4  2.8 μm和1.6 μm激光级联跃迁的中红外光纤激光器结构

    Figure 4.  Schematic of mid-infrared fiber lasers with cascaded 2.8 μm and 1.6 μm laser transitions.

    图 5  2.8 μm激光单谐振腔系统(无1.6 μm腔反馈)与2.8 μm和1.6 μm激光级联跃迁双谐振腔系统(有1.6 μm腔反馈)激光特性对比 (a) 2.8 μm和1.6 μm激光输出功率随泵浦功率的变化; (b) 35 W泵浦功率下泵浦光与1.6 μm级联激光沿光纤的功率分布; (c) 35 W泵浦功率下4I15/2, 4I13/24I11/2能级的粒子数沿光纤的分布情况

    Figure 5.  2.8 μm laser characteristics of the 2.8 μm laser single-cavity system (without 1.6 μm feedback) and the dual-cavity system based on cascaded 2.8 μm and 1.6 μm lasers (with 1.6 μm feedback): (a) Output power of 2.8 μm and 1.6 μm laser as a function of 976 nm launched pump power; (b) power distribution of pump light and 1.6 μm cascade laser along fiber under 35 W of launched pump power; (c) population distribution of 4I15/2, 4I13/2 and 4I11/2 energy levels along active fiber under 35 W of launched pump power

    图 6  泵浦功率为50 W时 (a) 2.8 μm波段不同激光波长输出功率随1.6 μm级联激光波长的变化情况; (b)固定级联激光波长为1610 nm, 2.8 μm波段不同激光波长输出功率变化情况; (c) 2880 nm和1610 nm激光级联跃迁输出功率随泵浦功率的变化关系. 图中2.8 μm谐振腔反射率为99%和4%, 1.6 μm谐振腔反射率均为99%

    Figure 6.  Under 50 W of launched pump power at 976 nm: (a) 2.8 μm output power as a function of cascaded wavelength at 1.6 μm; (b) 2.8 μm output power as a function of laser wavelength at 2.8 μm, the value of cascaded wavelength was fixed at 1610 nm; (c) output power of 2880 nm and 1610 nm laser as a function of 976 nm launched pump power. 2.8 μm cavity feedbacks: Rs1 = 99%, Rs1L = 4%, 1.6 μm cavity feedbacks: Rs2 = 99%, Rs2L = 99%.

    图 7  不同1610 nm腔反馈(Rs2/Rs2L)下 (a) 2880 nm和1610 nm激光输出功率随泵浦功率的变化关系; (b) 泵浦功率为50 W时, 泵浦光和1610 nm激光沿光纤的功率分布

    Figure 7.  With the different 1610 nm feedbacks (Rs2/Rs2L): (a) Output power of 2880 nm and 1610 nm laser as a function of 976 nm launched pump power; (b) 976 nm and 1.6 μm laser power distribution along active fiber under 50 W of launched pump power.

    表 1  仿真中使用的参数[7,18,19]

    Table 1.  Parameters used in the simulation [7,18,19].

    Parameter Value Parameter Value
    λp/nm 976 Rp 0.04
    λs1/nm 2800 RpL 0.04
    σ02/(10–25 m2) 2.00 W1103/(10–24 m3·s–1) 0.40
    σ26/(10–25 m2) 1.10 W2206/(10–24 m3·s–1) 0.08
    σ12/(10–25 m2) 2.50 W4251/(10–24 m3·s–1) 15.0
    σ21/(10–25 m2) 4.22 W5031/(10–24 m3·s–1) 0.10
    Rs1 0.99 αp/m–1 0.023
    Rs1L 0.04 αs1/m–1 0.00345
    DownLoad: CSV

    表 2  级联跃迁系统的模拟参数[15,1720]

    Table 2.  Parameters used in cascaded transition system [15,1720].

    参数 数值 参数 数值
    λs1/nm 2825 σ10/(10–25 m2) 0.55
    λs2/nm 1614 σ01/(10–25 m2) 0.12
    Rs2 0.80 σ13/(10–25 m2) 0.127
    Rs2L 0.995 σ31/(10–25 m2) 0.133
    σ12/(10–25 m2) 1.37 αs2/m–1 0.0048
    σ21/(10–25 m2) 2.67
    DownLoad: CSV

    表 3  ZBLAN玻璃中铒离子在2.8 μm波段典型波长的吸收和发射截面[18]

    Table 3.  Absorption and emission cross sections of erbium ions at three selected wavelength of 2.8 μm regime in ZBLAN glass [18].

    λs1/nmCross-sectionValue/(10–24 m2)
    2700σ210.235
    σ120.262
    2800σ210.422
    σ120.249
    2900σ210.066
    σ120.022
    DownLoad: CSV
    Baidu
  • [1]

    Picqué N, Hänsch T W 2019 Opt. Photonics News 30 26Google Scholar

    [2]

    Jackson S D, Lauto A 2002 Lasers Surg. Med. 30 184Google Scholar

    [3]

    Mahulikar S P, Sonawane H R, Arvind Rao G 2007 Prog. Aerosp. Sci. 43 218Google Scholar

    [4]

    Wu Y, Liang S, Fu Q, Bradley T D, Poletti F, Richardson D J, Xu L 2022 Opt. Lett. 47 3600Google Scholar

    [5]

    Su L B, Guo X S, Jiang D P, Wu Q H, Qin Z P, Xie G Q 2018 Opt. Express 26 5558Google Scholar

    [6]

    Yao Y, Hoffman A J, Gmachl C F 2012 Nature Photon. 6 432Google Scholar

    [7]

    Henderson-Sapir O, Munch J, Ottaway D J 2016 Opt. Express 24 6869Google Scholar

    [8]

    Quimby R S, Miniscalco W J 1989 Appl. Opt. 28 14Google Scholar

    [9]

    Fortin V, Bernier M, Bah S T, Vallée R 2015 Opt. Lett. 40 2882Google Scholar

    [10]

    Goya K, Uehara H, Konishi D, Sahara R, Murakami M, Tokita S 2019 Appl. Phys. Express 12 102007Google Scholar

    [11]

    Aydin Y O, Fortin V, Vallée R, Bernier M 2018 Opt. Lett. 43 4542Google Scholar

    [12]

    张钧翔, 付士杰, 盛泉, 夏文新, 张露, 史伟, 姚建铨 2023 中国激光 50 0715001Google Scholar

    Zhang J X, Fu S J, Sheng Q, Xia W X, Zhang L, Shi W, Yao J Q 2023 Chin. J. Lasers 50 0715001Google Scholar

    [13]

    Jackson S D, Pollnau M, Li J F 2011 IEEE J. Quantum Electron. 47 471Google Scholar

    [14]

    Li J F, Wang L L, Luo H Y, Xie J T, Liu Y 2016 IEEE Photonic. Tech. L. 28 673Google Scholar

    [15]

    Aydin Y O, Fortin V, Maes F, Jobin F, Jackson S D, Vallée R, Bernier M 2017 Optica 4 235Google Scholar

    [16]

    Li J F, Luo H Y, Liu Y, Zhang L, Jackson S D 2014 IEEE J. Sel. Top. Quantum Electron. 20 15Google Scholar

    [17]

    Guo C Y, Lin J P, Tang Z Y, Li K Y, Tu L S, Wang J C, Liu X, Ruan S C 2022 J. Light. Technol. 40 4397Google Scholar

    [18]

    Wang B, Cheng L H, Zhong H Y, Sun J S, Tian Y, Zhang X Q, Chen B J 2009 Opt. Mater. 31 1658Google Scholar

    [19]

    Quimby R S, Miniscalco W J, Thompson B 1992 Proc. SPIE Fiber Laser Sources and Amplifiers III 17 WE3Google Scholar

    [20]

    Ivanova S, PelléF 2009 J. Opt. Soc. Am. B 26 1930Google Scholar

    [21]

    Zhou K M, Zhang L, Chen X F, Mezentsev V, Bennion I 2010 Int. J. Smart Nano Mater. 1 237Google Scholar

  • [1] Yang Jia-Qi, Zhao Gang, Jiao Kang, Gao Jian, Yan Xiao-Juan, Zhao Yan-Ting, Ma Wei-Guang, Jia Suo-Tang. Research on generation of stable mid-infrared lasers with narrow linewidths based on optical feedback locking. Acta Physica Sinica, 2024, 73(1): 014205. doi: 10.7498/aps.73.20231049
    [2] Yao Xiao-Dai, Wu Shuang, Zhao Rui, Wu Miao-Xin, Liu Hang, Jin Guang-Yong, Yu Yong-Ji. 3.4 μm mid-infrared pulse train laser based on stepped acousto-optic Q-switched external cavity pumped MgO:PPLN optical parametric oscillator. Acta Physica Sinica, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [3] Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong. Optimization of thermal performance of cladding power stripper in fiber laser. Acta Physica Sinica, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [4] Hao Qian-Qian, Zong Meng-Yu, Zhang Zhen, Huang Hao, Zhang Feng, Liu Jie, Liu Dan-Hua, Su Liang-Bi, Zhang Han. Bismuth nanosheets based saturable-absorption passively Q-switching mid-infrared single-crystal fiber laser. Acta Physica Sinica, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [5] Zhang Qian, Jin Xin-Xin, Zhang Meng, Zheng Zheng. Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser. Acta Physica Sinica, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [6] Yang Wen-Hai, Diao Wen-Ting, Cai Chun-Xiao, Song Xue-Rui, Feng Fu-Pan, Zheng Yao-Hui, Duan Chong-Di. Comparative study of squeezed vacuum states prepared by using 1064-nm solid-state and fiber-laser as pump source. Acta Physica Sinica, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [7] Peng Wan-Jing, Liu Peng. Continuously spacing-tunable dual-wavelength erbium-doped fiber laser based on polarization-dependent in-line multimode-single-mode-multimode fiber filter. Acta Physica Sinica, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [8] Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu. 203 W all-polarization-maintaining picosecond thulium-doped all-fiber laser. Acta Physica Sinica, 2016, 65(19): 194208. doi: 10.7498/aps.65.194208
    [9] Xiong Shui-Dong, Xu Pan, Ma Ming-Xiang, Hu Zheng-Liang, Hu Yong-Ming. Experimental study on mode hopping triggered by transient characteristics of saturable absorber gratings in Er-doped fiber ring lasers. Acta Physica Sinica, 2014, 63(13): 134206. doi: 10.7498/aps.63.134206
    [10] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [11] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [12] Yang Wei, Liu Ying, Xiao Li-Feng, Yang Zhao-Xiang, Pan Jian-Xuan. Acousto-optic wavelength-tunable erbium-doped fiber ring laser. Acta Physica Sinica, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [13] Jiang Jian, Chang Jian-Hua, Feng Su-Juan, Mao Qing-He. Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers. Acta Physica Sinica, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [14] Wang Jing, Zheng Kai, Li Jian, Liu Li-Song, Chen Gen-Xiang, Jian Shui-Sheng. Research on tunable erbium-doped ring fiber laser based on a high-birefringence Sagnac loop: theory and experiment. Acta Physica Sinica, 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [15] Yan Feng-Ping, Wei Huai, Fu Yong-Jun, Wang Lin, Zheng Kai, Mao Xiang-Qiao, Liu Peng, Peng Jiang, Liu Li-Song, Jian Shui-Sheng. Tm3+ doped cladding pumped silica optic fiber laser. Acta Physica Sinica, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [16] Ren Guang-Jun, Wei Zhen, Yao Jian-Quan. Q-switched pulse polarization-maintaining Nd3+-doped fiber laser. Acta Physica Sinica, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [17] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [18] Wang Jian-Ming, Duan Kai-Liang, Wang Yi-Shan. Experimental study of coherent beam combining of two fiber lasers. Acta Physica Sinica, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [19] Ren Guang-Jun, Zhang Qiang, Wang Peng, Yao Jian-Quan. Study of Nd3+-doped polarization-maintaining fiber laser. Acta Physica Sinica, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [20] Dong Shu-Fu, Zhan Sheng-Bao, Chen Guo-Fu, Wang Xian-Hua. Dynamic behavior analysis of the 3μm and 2μm cascade Ho3+:ZBLAN fiber lasers. Acta Physica Sinica, 2005, 54(7): 3154-3158. doi: 10.7498/aps.54.3154
Metrics
  • Abstract views:  2595
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2023
  • Accepted Date:  21 August 2023
  • Available Online:  08 October 2023
  • Published Online:  20 November 2023

/

返回文章
返回
Baidu
map