Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative study of squeezed vacuum states prepared by using 1064-nm solid-state and fiber-laser as pump source

Yang Wen-Hai Diao Wen-Ting Cai Chun-Xiao Song Xue-Rui Feng Fu-Pan Zheng Yao-Hui Duan Chong-Di

Citation:

Comparative study of squeezed vacuum states prepared by using 1064-nm solid-state and fiber-laser as pump source

Yang Wen-Hai, Diao Wen-Ting, Cai Chun-Xiao, Song Xue-Rui, Feng Fu-Pan, Zheng Yao-Hui, Duan Chong-Di
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Squeezed states, which have fewer fluctuations in one quadrature than vacuum noise at the expense of increasing fluctuations in the other quadrature, can be used to enhance measurement accuracy, increase detection sensitivity, and improve fault tolerance performance for quantum information and quantum computation. In this paper, the influences of relative intensity noise (RIN) of all-solid-state single-frequency laser and single-frequency fiber laser on the squeezing factor of squeezed vacuum states are experimentally and theoretically studied. Here, an all-solid-state single-frequency laser and a single-frequency fiber laser each are used as a light source of the system generating squeezed vacuum states. The homodyne detection is used to compare the RIN of all-solid-state single-frequency laser and that of single-frequency fiber laser at the analysis frequency of 1 MHz. The results show that the RIN of the all-solid-state single-frequency laser and single-frequency fiber laser are higher than those of the shot noise limitation 2.3 dB and 30 dB at the analysis frequency of 1 MHz, respectively. The RIN of all-solid-state single-frequency laser is far less than that of the single-frequency fiber laser. As a result, squeezed vacuum state with maximum quantum noise reduction of (13.2 ± 0.2) dB and (10 ± 0.2) dB are directly detected. Theoretical calculation shows that the influence of the RIN on the measurement accuracy is the major factor of degrading the squeezing factor with the fiber laser as the pump source. The measurement error of squeezed vacuum state caused by the RIN of single-frequency fiber laser is about 2.6 dB. The discrepancy of the pump power between the two lasers is another factor of affecting the squeezing factor, corresponding to 0.6 dB quantum noise difference. The theoretical calculations are consistent with the experimental results, which provides some guidance for developing the practical squeezed states with highly squeezing level.
      Corresponding author: Zheng Yao-Hui, yhzheng@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11654002, 61575114, 61501368, 11505135), the Program for Sanjin Scholar of Shanxi Province, China, the Fund for Shanxi “1331 Project” Key Subjects Construction, China, and the Program for Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China.
    [1]

    Yin J, Cao Y, Li Y H 2017 Science 356 1140Google Scholar

    [2]

    霍美如, 秦际良, 孙颍榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134

    Huo M R, Qin J L, Sun Y R, Cheng J L, Yan Z H, Jia X J 2018 Acta Sin. Quantum Opt. 24 134

    [3]

    Bai S, Wang J Y, Qiang J, Zhang L, Wang J J 2014 Opt. Express 22 26462Google Scholar

    [4]

    张逸伦, 蓝天, 高明光, 赵涛, 沈振民 2015 64 164201Google Scholar

    Zhang Y L, Lan T, Gao M G, Zhao T, Shen Z M 2015 Acta Phys. Sin. 64 164201Google Scholar

    [5]

    Liu J J, Chang Q, Bao M M, Yuan B, Yang K, Ma Y Q 2018 Chin. Phys. B 26 098102

    [6]

    姜海峰 2018 67 160602Google Scholar

    Jiang H F 2018 Acta Phys. Sin. 67 160602Google Scholar

    [7]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [8]

    Lu H D, Su J, Zheng Y H, Peng K C 2014 Opt. Lett. 39 1117Google Scholar

    [9]

    杨文海, 王雅君, 李志秀, 郑耀辉 2014 中国激光 41 0502002

    Yang W H, Wang Y J, Li Z X, Zheng Y H 2014 Chin. J. Laser 41 0502002

    [10]

    严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰 2018 67 184201Google Scholar

    Yan X W, Wang Z G, Jiang X Y, Zheng J G, Li M, Jing Y F 2018 Acta Phys. Sin. 67 184201Google Scholar

    [11]

    Xu S H, Yang Z M, Zhang W N, Wei X M, Qian Q, Chen D D, Zhang Q Y, Shen S X, Peng M Y, Qiu J R 2011 Opt. Lett. 36 3708Google Scholar

    [12]

    冯晋霞, 杜京师, 靳小丽, 李渊冀, 张宽收 2018 67 174203Google Scholar

    Feng J X, Du J S, Jin X L, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 174203Google Scholar

    [13]

    Wang Y J, Yang W H, Zheng Y H, Peng K C 2015 Chin. Phys. B 24 070303Google Scholar

    [14]

    马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 66 244205Google Scholar

    Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205Google Scholar

    [15]

    Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114Google Scholar

    [16]

    Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H, Peng K C 2016 Opt. Lett. 41 3331Google Scholar

    [17]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [18]

    Gardiner C W, Collett M J 1985 Phys. Rev. A 30 3761

    [19]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262Google Scholar

    [20]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859Google Scholar

  • 图 1  本底光RIN测量装置和压缩态光场产生实验系统(SHG, 倍频; EOM, 电光调制器; PZT, 锆钛酸铅压电陶瓷; BHD, 平衡零拍探测器; DBS, 分束镜; OPA, 光参量放大器; LO beam, 本底光; SA, 频谱仪)

    Figure 1.  Schematic of the experimental setup for measuring the local oscillator intensity noise and generating the squeezed state (SHG, second-harmonic generation; EOM, electro-optic modulator; PZT, piezoelectric ceramic transducer; BHD, balanced homodyne detector; DBS, dichroic beam splitter; OPA, optical parametric amplifier; LO, local oscillator; SA, spectrum analyzer).

    图 2  单频光纤激光器经MC滤除一部分RIN和相位噪声后对应的本底光RIN

    Figure 2.  RIN of local oscillator with single-frequency Yb3+-doped phosphate fiber laser after MC.

    图 3  单频固体激光器经MC滤除一部分RIN和相位噪声后对应的本底光RIN

    Figure 3.  RIN of local oscillator with single-frequency Nd:YVO4 laser after MC.

    图 4  单频固体激光器制备的压缩真空态光场的噪声谱, 分析频率1 MHz (分辨带宽RBW = 300 kHz, 视频带宽VBW = 200 Hz)

    Figure 4.  Balance homodyne measurements of the quadrature noise variances at a Fourier frequency of 1 MHz, with a resolution bandwidth RBW of 300 kHz and a video bandwidth VBW of 200 Hz.

    图 5  单频光纤激光器制备的真空压缩态光场的噪声谱, 分析频率1 MHz (RBW = 300 kHz, VBW = 200 Hz)

    Figure 5.  Balance homodyne measurements of the quadrature noise variances at a Fourier frequency of 1 MHz, with a RBW of 300 kHz and a NBW of 200 Hz.

    Baidu
  • [1]

    Yin J, Cao Y, Li Y H 2017 Science 356 1140Google Scholar

    [2]

    霍美如, 秦际良, 孙颍榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134

    Huo M R, Qin J L, Sun Y R, Cheng J L, Yan Z H, Jia X J 2018 Acta Sin. Quantum Opt. 24 134

    [3]

    Bai S, Wang J Y, Qiang J, Zhang L, Wang J J 2014 Opt. Express 22 26462Google Scholar

    [4]

    张逸伦, 蓝天, 高明光, 赵涛, 沈振民 2015 64 164201Google Scholar

    Zhang Y L, Lan T, Gao M G, Zhao T, Shen Z M 2015 Acta Phys. Sin. 64 164201Google Scholar

    [5]

    Liu J J, Chang Q, Bao M M, Yuan B, Yang K, Ma Y Q 2018 Chin. Phys. B 26 098102

    [6]

    姜海峰 2018 67 160602Google Scholar

    Jiang H F 2018 Acta Phys. Sin. 67 160602Google Scholar

    [7]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [8]

    Lu H D, Su J, Zheng Y H, Peng K C 2014 Opt. Lett. 39 1117Google Scholar

    [9]

    杨文海, 王雅君, 李志秀, 郑耀辉 2014 中国激光 41 0502002

    Yang W H, Wang Y J, Li Z X, Zheng Y H 2014 Chin. J. Laser 41 0502002

    [10]

    严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰 2018 67 184201Google Scholar

    Yan X W, Wang Z G, Jiang X Y, Zheng J G, Li M, Jing Y F 2018 Acta Phys. Sin. 67 184201Google Scholar

    [11]

    Xu S H, Yang Z M, Zhang W N, Wei X M, Qian Q, Chen D D, Zhang Q Y, Shen S X, Peng M Y, Qiu J R 2011 Opt. Lett. 36 3708Google Scholar

    [12]

    冯晋霞, 杜京师, 靳小丽, 李渊冀, 张宽收 2018 67 174203Google Scholar

    Feng J X, Du J S, Jin X L, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 174203Google Scholar

    [13]

    Wang Y J, Yang W H, Zheng Y H, Peng K C 2015 Chin. Phys. B 24 070303Google Scholar

    [14]

    马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 66 244205Google Scholar

    Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205Google Scholar

    [15]

    Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114Google Scholar

    [16]

    Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H, Peng K C 2016 Opt. Lett. 41 3331Google Scholar

    [17]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [18]

    Gardiner C W, Collett M J 1985 Phys. Rev. A 30 3761

    [19]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262Google Scholar

    [20]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859Google Scholar

Metrics
  • Abstract views:  9405
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2018
  • Accepted Date:  18 April 2019
  • Available Online:  01 June 2019
  • Published Online:  20 June 2019

/

返回文章
返回
Baidu
map