搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

203W全光纤全保偏结构皮秒掺铥光纤激光器

刘江 刘晨 师红星 王璞

引用本文:
Citation:

203W全光纤全保偏结构皮秒掺铥光纤激光器

刘江, 刘晨, 师红星, 王璞

203 W all-polarization-maintaining picosecond thulium-doped all-fiber laser

Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu
PDF
导出引用
  • 利用光纤布拉格光栅作为光谱滤波器来控制锁模掺铥光纤激光器的光谱形状和脉冲宽度,以及结合纤芯抽运高掺杂双包层掺铥光纤技术,实现了2m波段重复频率为611.5 MHz的皮秒脉冲激光输出.利用该高重复频率皮秒激光作为种子源,结合主振荡功率放大技术,研制出了百瓦量级全光纤全保偏结构皮秒脉冲掺铥光纤激光放大系统,得到了平均功率为203 W的线偏振皮秒脉冲激光输出,偏振消光比15 dB,激光脉冲宽度为15 ps,相应的激光峰值功率为22 kW.该结果为目前国际上2m波段全光纤结构超短脉冲激光器所产生的最高平均输出功率,为下一步25m波段高功率中红外激光的产生提供了可靠的抽运源.
    High-power ultrafast fiber lasers are important sources for a number of applications including material processing, pump source for optical parametric oscillator, and supercontinuum generation. Ultrafast thulium-doped fiber lasers, which extend the wavelength range of fiber lasers from 1.8 to 2.1 m, have rapidly developed in the last several years and the average output power of the ultrafast thulium-doped fiber amplifiers has reached a hundredwatt level. The broad and smooth gain spectrum of thulium-doped fiber makes it a well-suited gain medium for generating the ultrashort laser pulses and broad wavelength tunability. However, previous reports on ultrafast thulium-doped fiber lasers and amplifiers were related to non-PM fiber configuration. These ultrafast thulium-doped fiber lasers and amplifiers may suffer the environmental instability, which means that these fiber sources are sensitive to externally-induced changes, like significant temperature variations and mechanical perturbations which will influence the fiber birefringence property. An effective method to eliminate this environmental instability is to build an all-PM, thulium-doped all-fiber MOPA configuration where the light polarizes only along the slow or fast axis in the PM fiber and PM-fiber components. Here, we demonstrate a high-power all-polarization-maintaining picosecond thulium-doped all-fiber master-oscillator power-amplifier (MOPA) system. The linearly-polarized thulium-doped all-fiber MOPA yields 203 W of average output power at central wavelength of 1985 nm with a polarization extinction ratio of 15 dB. The pulse duration of 15 ps at 611.5 MHz repetition-rate results in a peak-power of 22 kW in the final thulium-doped fiber power amplifier. To the best of our knowledge, this is the highest average output power ever reported for a picosecond-pulsed thulium-doped all-fiber laser at 2 m wavelength. Furthermore, high-power linearly-polarized thulium-doped fiber laser with compact and simple design is greatly demanded for a variety of applications, such as coherent polarization beam combination, and frequency conversion in nonlinear crystals.
      通信作者: 王璞, wangpuemail@bjut.edu.cn
    • 基金项目: 国家自然科学基金重大科研仪器研制项目(批准号:61527822)、国家自然科学基金重点项目(批准号:61235010)、国家自然科学基金青年项目(批准号:61505004)、中国博士后科学基金特别资助项目(批准号:2016T90019)、中国博士后科学基金面上资助项目(批准号:2015M570019)、北京市博士后工作经费资助项目(批准号:2015ZZ-03)和北京市教委科技计划一般项目(批准号:KM201610005028)资助的课题.
      Corresponding author: Wang Pu, wangpuemail@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61527822, 61235010, 61505004), the China Postdoctoral Science Foundation (Grant Nos. 2016T90019, 2015M570019), the Beijing Postdoctoral Research Foundation, China (Grant No. 2015ZZ-03), and the Scientific Research General Program of Beijing Municipal Commission of Education, China (Grant No. KM201610005028).
    [1]

    Moulton P, Rines G, Slobodtchikov E, Wall K, Frith G, Samson B, Carter A 2009 IEEE J. Sel. Top. Quantum Electron 15 85

    [2]

    Baudelet M, Willis C, Shah L, Richardson M 2010 Opt. Express 18 7905

    [3]

    Li Z, Heidt A M, Daniel J M O, Jung Y, Alam S U, Richardson D J 2013 Opt. Express 21 9289

    [4]

    Mingareeva I, Weirauch F, Olowinsky A, Shah L, Kadwani P, Richardson M 2012 Opt. Laser Technol. 44 2095

    [5]

    Hardy L, Wilson C, Irby P, Fried N 2014 IEEE J. Sel. Top. Quantum Electron 20 0902604

    [6]

    Gather M, Yun S 2011 Nature Photon. 5 406

    [7]

    Popmintchev T, Chen M, Arpin P, Murnane M, Kapteyn H 2010 Nature Photon. 4 822

    [8]

    Nieuwenhuis A, Lee C, van d, Lindsay I, Gross P, Boller K 2008 Opt. Lett. 33 52

    [9]

    Dergachev A, Armstrong D, Smith A, Drake T, Dubois M 2007 Opt. Express 15 14404

    [10]

    Leindecker N, Marandi A, Byer R, Vodopyanov K, Jiang J, Hartl I, Fermann M, Schunemann P 2012 Opt. Express 20 7046

    [11]

    Wang P, Liu J 2013 Chin. J. Laser 40 1002 (in Chinese) [王璞, 刘江2013中国激光40 1002]

    [12]

    Haxsen F, Wandt D, Morgner U, Neumann J, Kracht D 2010 Opt. Lett. 35 2991

    [13]

    Liu J, Wang Q, Wang P 2012 Opt. Express 20 22442

    [14]

    Sims R, Kadwani P, Shah A, Richardson M 2013 Opt. Lett. 38 121

    [15]

    Wan P, Yang L, Liu J 2013 Opt. Express 21 21374

    [16]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [17]

    Stutzki F, Gaida C, Gebhardt M, Jansen F, Wienke A, Zeitner U, Fuchs F, Jauregui C, Wandt D, Kracht D, Limpert J, Tnnermann A 2014 Opt. Lett. 39 4671

    [18]

    Gebhardt M, Gaida C, Hödrich S, Stutzki F, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Lett. 40 2770

    [19]

    Gaida C, Gebhardt M, Stutzki F, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Lett. 40 5160

    [20]

    Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206 (in Chinese) [窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉2015 64 064206]

    [21]

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210 (in Chinese) [刘欢, 巩马理, 曹士英, 林百科, 方占军2015 64 114210]

    [22]

    Liu J, Xu J, Wang Q, Wang P 2012 Chin. J. Laser 39 2009 (in Chinese) [刘江, 徐佳, 王潜, 王璞2012中国激光39 2009]

  • [1]

    Moulton P, Rines G, Slobodtchikov E, Wall K, Frith G, Samson B, Carter A 2009 IEEE J. Sel. Top. Quantum Electron 15 85

    [2]

    Baudelet M, Willis C, Shah L, Richardson M 2010 Opt. Express 18 7905

    [3]

    Li Z, Heidt A M, Daniel J M O, Jung Y, Alam S U, Richardson D J 2013 Opt. Express 21 9289

    [4]

    Mingareeva I, Weirauch F, Olowinsky A, Shah L, Kadwani P, Richardson M 2012 Opt. Laser Technol. 44 2095

    [5]

    Hardy L, Wilson C, Irby P, Fried N 2014 IEEE J. Sel. Top. Quantum Electron 20 0902604

    [6]

    Gather M, Yun S 2011 Nature Photon. 5 406

    [7]

    Popmintchev T, Chen M, Arpin P, Murnane M, Kapteyn H 2010 Nature Photon. 4 822

    [8]

    Nieuwenhuis A, Lee C, van d, Lindsay I, Gross P, Boller K 2008 Opt. Lett. 33 52

    [9]

    Dergachev A, Armstrong D, Smith A, Drake T, Dubois M 2007 Opt. Express 15 14404

    [10]

    Leindecker N, Marandi A, Byer R, Vodopyanov K, Jiang J, Hartl I, Fermann M, Schunemann P 2012 Opt. Express 20 7046

    [11]

    Wang P, Liu J 2013 Chin. J. Laser 40 1002 (in Chinese) [王璞, 刘江2013中国激光40 1002]

    [12]

    Haxsen F, Wandt D, Morgner U, Neumann J, Kracht D 2010 Opt. Lett. 35 2991

    [13]

    Liu J, Wang Q, Wang P 2012 Opt. Express 20 22442

    [14]

    Sims R, Kadwani P, Shah A, Richardson M 2013 Opt. Lett. 38 121

    [15]

    Wan P, Yang L, Liu J 2013 Opt. Express 21 21374

    [16]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [17]

    Stutzki F, Gaida C, Gebhardt M, Jansen F, Wienke A, Zeitner U, Fuchs F, Jauregui C, Wandt D, Kracht D, Limpert J, Tnnermann A 2014 Opt. Lett. 39 4671

    [18]

    Gebhardt M, Gaida C, Hödrich S, Stutzki F, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Lett. 40 2770

    [19]

    Gaida C, Gebhardt M, Stutzki F, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Lett. 40 5160

    [20]

    Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206 (in Chinese) [窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉2015 64 064206]

    [21]

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210 (in Chinese) [刘欢, 巩马理, 曹士英, 林百科, 方占军2015 64 114210]

    [22]

    Liu J, Xu J, Wang Q, Wang P 2012 Chin. J. Laser 39 2009 (in Chinese) [刘江, 徐佳, 王潜, 王璞2012中国激光39 2009]

  • [1] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器.  , 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [2] 刘恒, 张钧翔, 付士杰, 盛泉, 史伟, 姚建铨. 有源光纤中稀土离子激光上能级寿命测量的研究.  , 2019, 68(22): 224202. doi: 10.7498/aps.68.20190616
    [3] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳.  , 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [4] 曹涧秋, 刘文博, 陈金宝, 陆启生. 单模热致超大模场掺镱光纤放大器的数值研究.  , 2017, 66(6): 064201. doi: 10.7498/aps.66.064201
    [5] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器.  , 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [6] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生.  , 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [7] 连富强, 樊仲维, 白振岙, 刘一州, 林蔚然, 张晓雷, 赵天卓. 高稳定性、高质量脉冲压缩飞秒光纤激光系统研究.  , 2015, 64(16): 164207. doi: 10.7498/aps.64.164207
    [8] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波.  , 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [9] 詹敏杰, 邹育婉, 林清峰, 王兆华, 韩海年, 吕亮, 魏志义, 章建, 唐定远. 钛宝石激光抽运的被动锁模Tm:YAG陶瓷激光实验研究.  , 2014, 63(1): 014205. doi: 10.7498/aps.63.014205
    [10] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量.  , 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [11] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲.  , 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [12] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良. 碳纳米管锁模双包层光纤激光器的实验研究.  , 2013, 62(2): 024209. doi: 10.7498/aps.62.024209
    [13] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究.  , 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [14] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器.  , 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [15] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器.  , 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [16] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器.  , 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [17] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究.  , 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [18] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究.  , 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [19] 黄绣江, 刘永智, 隋 展, 李明中, 李 忻, 林宏奂, 王建军. 全光纤超短脉冲掺Yb3+光纤环形激光器.  , 2006, 55(3): 1191-1195. doi: 10.7498/aps.55.1191
    [20] 李曙光, 周桂耀, 邢光龙, 侯蓝田, 王清月, 栗岩锋, 胡明列. 微结构光纤中超短激光脉冲传输的数值模拟.  , 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
计量
  • 文章访问数:  7872
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-26
  • 修回日期:  2016-07-14
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map