Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highly sensitive broadband terahertz modulator based on MAPbI3/Graphene/Si composite structure

Lai Wei-En Wu Zong-Dong Li Li-Qi Liu Gen Fang Yan-Jun

Citation:

Highly sensitive broadband terahertz modulator based on MAPbI3/Graphene/Si composite structure

Lai Wei-En, Wu Zong-Dong, Li Li-Qi, Liu Gen, Fang Yan-Jun
PDF
HTML
Get Citation
  • A high-performance silicon-based terahertz modulator is one of the key devices for building an ultrawideband terahertz-fiber hybrid communication system. In this paper, an ultrawideband terahertz modulator with large modulation depth based on a chalcogenide/graphene/silicon (MAPbI3/Graphene/Si) composite structure driven by near-infrared light (NIR) is proposed. The experimental results show that the graphene thin film and the chalcogenide hole transport layer can effectively promote the interfacial charge separation, increase the carrier complex lifetime, significantly enhance the surface conductivity of the device, further modulate the terahertz wave transmission amplitude, and realize the function of the light-controlled terahertz wave modulator under the NIR light drive. The terahertz transmission characteristics of the device are characterized by an 808 nm NIR modulation excitation source, and a large modulation depth of up to 88.3% is achieved in an ultra-wide frequency range of 0.2–2.5 THz and a low power density of 6.1 mW/mm2 driven by NIR light, which is much higher than that of the bare silicon substrate (14.0%), with the significant advantages of high sensitivity, broadband, and large modulation depth. The corresponding semi-analytical device model is established and the experimental results are verified by simulation. The proposed MAPbI3/Graphene composite thin film is effective in enhancing the silicon-based modulator performance and provides a new strategy for the future integration of silicon-based terahertz modulators in NIR terahertz-fiber hybrid communication systems.
      Corresponding author: Lai Wei-En, wnlai@hfut.edu.cn ; Fang Yan-Jun, jkfang@zju.edu.cn
    • Funds: Project supported by the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2022-015) and the National Natural Science Foundation of China (Grant No. 61905058).
    [1]

    Ma J J, Shrestha R, Adelberg J, Yeh C Y, Hossain Z, Knightly E, Jornet J M, Mittleman D M 2018 Nature 563 89Google Scholar

    [2]

    Kawano Y 2013 Contemp. Phys. 54 143Google Scholar

    [3]

    Yan Z Y, Zhu L G, Meng K, Huang W X, Shi Q W 2022 Trends Biotechnol. 40 816Google Scholar

    [4]

    Smith R A 2021 Appl. Sci. 11 11724Google Scholar

    [5]

    Wang R Q, Xie L J, Hameed S, Wang C, Ying Y B 2018 Carbon 132 42Google Scholar

    [6]

    张真真, 黎华, 曹俊诚 2018 67 090702Google Scholar

    Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702Google Scholar

    [7]

    Xu G F, Skorobogatiy M 2022 J. Infrared Millim. Terahertz Waves 43 728Google Scholar

    [8]

    Song Q, Chen H, Zhang M, Li L, Yang J B, Yan P G 2021 APL Photonics 6 056103Google Scholar

    [9]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [10]

    Kakenov N, Ergoktas M S, Balci O, Kocabas C 2018 2D Mater. 5 035018Google Scholar

    [11]

    Zeng H X, Gong S, Wang L, Zhou T C, Zhang Y, Lan F, Cong X, Wang L Y, Song T Y, Zhao Y C, Yang Z Q, Mittleman D M 2022 Nanophotonics 11 415Google Scholar

    [12]

    Wang J, Tian H, Li S, Li L, Guo W P, Zhou Z X 2020 Opt. Lett. 45 1276Google Scholar

    [13]

    田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 64 028401Google Scholar

    Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin. 64 028401Google Scholar

    [14]

    Hochberg M, Baehr J T, Wang G X, Shearn M, Harvard K, Luo J D, Chen B Q, Shi Z W, Lawson R, Sullivan P, Jen K Y A, Dalton L, Scherer A 2006 Nat. Mater. 5 703Google Scholar

    [15]

    Feng T D, Huang W X, Zhu H F, Lu X G, Das S, Shi Q W 2021 ACS Appl. Mater. Inter. 13 10574Google Scholar

    [16]

    Feng T D, Hu Y W, Chang X, Wan Xia Huang, Wang D Y, Zhu H F, An T Y, Li W P, Meng K, Lu X G, Roul B, Das S, Deng H, Zaytsev K I, Zhu L G, Shi Q W 2023 ACS Appl. Mater. Inter. 15 7592Google Scholar

    [17]

    Ren Z, Xu J Y, Liu J M, Li B L, Zhou C, Sheng Z G 2022 ACS Appl. Mater. Inter. 14 26923Google Scholar

    [18]

    Xing P K, Wu Q 2022 Opt. Mater. 133 112832Google Scholar

    [19]

    孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202Google Scholar

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar

    [20]

    Zhang P J, Cai T, Zhou Q L, She G W, Liang W L, Deng Y W, Ning T Y, Shi W S, Zhang L L, Zhang C L 2022 Nano Lett. 22 1541Google Scholar

    [21]

    Zhou R Y, Wang C, Huang Y X, Xu W D, Xie L J, Ying Y B 2020 Opt. Lasers Eng. 133 106147Google Scholar

    [22]

    Yoshioka K, Minam Y, Shudo K I, Dao T D, Nagao T, Kitajima M, Takeda J, Katayama I 2015 Nano Lett. 15 1036Google Scholar

    [23]

    Lai W E, Zhu Q, Liu G, Shi G H, Gan Y C, Amini A, Cheng C 2022 J. Phys. D:Appl. Phys. 55 505103Google Scholar

    [24]

    Zhao X L, Lou J, Xu X, Yu Y, Wang G M, Qi J H, Zeng L X, He J, Liang J G, Huang Y D, Zhang D P, Chang C 2022 Adv. Opt. Mater. 10 2102589Google Scholar

    [25]

    Zhou Z, Chen Y L, Feng L S 2016 J. Infrared Millim. Terahertz Waves 37 953Google Scholar

    [26]

    Ruan Z L, Pei L, Ning T G, Wang J S, Zheng J J, Li J, Xie Y H, Zhao Q, Wang J 2020 Opt. Commun. 469 125817Google Scholar

    [27]

    Cheng L, Jin Z M, Ma Z W, Su F H, Zhao Y, Zhang Y Z, Su T Y, Sun Y, Xu X L, Meng Z, Bian Y C, Sheng Z G 2018 Adv. Opt. Mater. 6 1700877Google Scholar

    [28]

    Qiu Q X, Huang Z M 2021 Adv. Mater. 33 2008126Google Scholar

    [29]

    Weis P, L J, Pomar G, Hoh M, Reinhard B, Brodyansk A, Rahm M 2012 ACS Nano 6 9118Google Scholar

    [30]

    Lai W E, Ge C D, Yuan H, Dong Q F, Yang D R, Fang Y J 2020 Adv. Mater. Technol. 5 1901090Google Scholar

    [31]

    Wang K H, Li J S, Yao J Q 2020 J. Infrared Millim. Terahertz Waves 41 557Google Scholar

    [32]

    Yang M S, Li T T, Yan X, Liang L J, Yao H Y, Sun Z Q, Li J, Li J, Wei D Q, Wang M, Ye Y X, Song X X, Zhang H T, Yao J Q 2022 ACS Appl. Mater. Inter. 14 2155Google Scholar

    [33]

    Wang H X, Ling F R, Luo C Y, Wang C H, Xiao Y R, Chang Z Y, Wu X C, Wang W J, Yao J Q 2022 Opt. Mater. 127 112235Google Scholar

    [34]

    Chen S, Fan F, Miao Y P, He X T, Zhang K L, Chang S J 2016 Nanoscale 8 4713Google Scholar

    [35]

    Wei M Q, Zhang D N, Li Y P, Zhang L, Jin L C, Wen T L, Bai F M, Zhang H W 2019 Nanoscale Res. Lett. 14 159Google Scholar

    [36]

    Mo C, Liu J B, Wei D S, Wu H L, Wen Q Y, Ling D X 2020 Sensors 20 2198Google Scholar

    [37]

    Liu D D, Wang W, Xiong L Y, Ji H Y, Zhang B, Shen J L 2019 Opt. Mater. 96 109368Google Scholar

    [38]

    Li S H, Li J S 2018 Appl. Phys. B 124 224Google Scholar

  • 图 1  (a) MAPbI3/Graphene基调制器结构示意图, 左侧为三维示意图, 右侧为侧视图; (b)硅基底上MAPbI3/Graphene复合薄膜的SEM表征图, 左侧为俯视图, 右侧为侧视图; (c) MAPbI3薄膜在波长500—800 nm下的吸收光谱

    Figure 1.  (a) Schematic diagram of MAPbI3/Graphene-based modulator structure; left, 3D schematic; right, side view; (b) SEM characterization of MAPbI3/Graphene composite thin film on silicon substrate; left, top view; right, side view; (c) absorption spectrum of MAPbI3 thin film at the wavelength range of 500–800 nm.

    图 2  (a) MAPbI3/Graphene模型光照示意图; (b) MAPbI3/Graphene复合薄膜加光激励后的能带示意图以及电子-空穴的流动情况

    Figure 2.  (a) Schematic of MAPbI3/Graphene model with light; (b) schematic diagram of energy band of MAPbI3/Graphene composite thin film after adding light excitation and electron-hole flow condition.

    图 3  (a) Graphene/Si调制器和(b) MAPbI3/Graphene/Si调制器的I-V曲线测试示意图; (c) Graphene/Si调制器和(d) MAPbI3/Graphene/Si调制器在光照(红线)和无光照(蓝线)下的I-V测试曲线; (e) Graphene/Si调制器和(f) MAPbI3/Graphene/Si调制器在0.5 V偏压, 15.1 mW功率光激励下的开关响应曲线

    Figure 3.  Schematic diagram of I-V curve test for (a) Graphene/Si modulator and (b) MAPbI3/Graphene/Si modulator; I-V test curves for (c) Graphene/Si modulator and (d) MAPbI3/Graphene/Si modulator under light (red line) and no light (blue line); switching response curves of (e) Graphene/Si modulator and (f) MAPbI3/Graphene/Si modulator under light excitation with 0.5 V bias and 15.1 mW power.

    图 4  在不同功率密度的激光照射下通过(a)裸硅和(b) MAPbI3/Graphene/Si传输的太赫兹脉冲时域波形; 在不同功率密度的激光照射下通过(c)裸硅和(d) MAPbI3/Graphene/Si传输的太赫兹脉冲的归一化透射; 在不同功率密度的激光照射下(e) 裸硅和(f) MAPbI3/Graphene/Si的太赫兹调制深度

    Figure 4.  Time domain waveforms of terahertz pulses transmitted through (a) bare silicon and (b) MAPbI3/Graphene/Si under laser irradiation at different power density; normalized transmission of terahertz pulses transmitted through (c) bare silicon and (d) MAPbI3/Graphene/Si under laser irradiation at different power density; terahertz modulation depth of (e) bare silicon and (f) MAPbI3/Graphene/Si under laser irradiation at different power density.

    图 5  (a) MAPbI3/Graphene/Si复合结构的响应时间测试示意图; (b) 器件的响应时间函数

    Figure 5.  (a) Schematic diagram of response time testing of MAPbI3/Graphene/Si composite structure; (b) response time function of device.

    图 6  (a) 仿真模拟模型示意图; (b) 通过改变模型的电导率来调制太赫兹脉冲的波形

    Figure 6.  (a) Schematic diagram of the simulated model; (b) waveform of modulated terahertz pulse by changing conductivity of model.

    表 1  常见太赫兹调制器性能比较

    Table 1.  Performance comparison of common terahertz modulators.

    MaterialWavelength/nmPower density/(mW·mm–2)Spectral range/THzMD/%Reference
    MAPbI3/Graphene/Si8086.10.2—2.588.3This work
    MAPbI3/SiO2106453.10.1—1.066.2[33]
    MoS2/Si5322.40.2—2.075.0[34]
    Graphene/TiO2/Si80871.30.3—1.788.0[35]
    Silicon nanotip80860.00.1—4.091.6[36]
    MAPbBr3/Si45030.00.2—2.680.0[37]
    CsPbBr3/Si45020.00.23—0.3545.5[38]
    Graphene/Si780159.20.2—2.099.0[29]
    DownLoad: CSV
    Baidu
  • [1]

    Ma J J, Shrestha R, Adelberg J, Yeh C Y, Hossain Z, Knightly E, Jornet J M, Mittleman D M 2018 Nature 563 89Google Scholar

    [2]

    Kawano Y 2013 Contemp. Phys. 54 143Google Scholar

    [3]

    Yan Z Y, Zhu L G, Meng K, Huang W X, Shi Q W 2022 Trends Biotechnol. 40 816Google Scholar

    [4]

    Smith R A 2021 Appl. Sci. 11 11724Google Scholar

    [5]

    Wang R Q, Xie L J, Hameed S, Wang C, Ying Y B 2018 Carbon 132 42Google Scholar

    [6]

    张真真, 黎华, 曹俊诚 2018 67 090702Google Scholar

    Zhang Z Z, Li H, Cao J C 2018 Acta Phys. Sin. 67 090702Google Scholar

    [7]

    Xu G F, Skorobogatiy M 2022 J. Infrared Millim. Terahertz Waves 43 728Google Scholar

    [8]

    Song Q, Chen H, Zhang M, Li L, Yang J B, Yan P G 2021 APL Photonics 6 056103Google Scholar

    [9]

    Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S, Zhang H W 2018 Adv. Opt. Mater. 6 1700620Google Scholar

    [10]

    Kakenov N, Ergoktas M S, Balci O, Kocabas C 2018 2D Mater. 5 035018Google Scholar

    [11]

    Zeng H X, Gong S, Wang L, Zhou T C, Zhang Y, Lan F, Cong X, Wang L Y, Song T Y, Zhao Y C, Yang Z Q, Mittleman D M 2022 Nanophotonics 11 415Google Scholar

    [12]

    Wang J, Tian H, Li S, Li L, Guo W P, Zhou Z X 2020 Opt. Lett. 45 1276Google Scholar

    [13]

    田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武 2015 64 028401Google Scholar

    Tian W, Wen Q Y, Chen Z, Yang Q H, Jing Y L, Zhang H W 2015 Acta Phys. Sin. 64 028401Google Scholar

    [14]

    Hochberg M, Baehr J T, Wang G X, Shearn M, Harvard K, Luo J D, Chen B Q, Shi Z W, Lawson R, Sullivan P, Jen K Y A, Dalton L, Scherer A 2006 Nat. Mater. 5 703Google Scholar

    [15]

    Feng T D, Huang W X, Zhu H F, Lu X G, Das S, Shi Q W 2021 ACS Appl. Mater. Inter. 13 10574Google Scholar

    [16]

    Feng T D, Hu Y W, Chang X, Wan Xia Huang, Wang D Y, Zhu H F, An T Y, Li W P, Meng K, Lu X G, Roul B, Das S, Deng H, Zaytsev K I, Zhu L G, Shi Q W 2023 ACS Appl. Mater. Inter. 15 7592Google Scholar

    [17]

    Ren Z, Xu J Y, Liu J M, Li B L, Zhou C, Sheng Z G 2022 ACS Appl. Mater. Inter. 14 26923Google Scholar

    [18]

    Xing P K, Wu Q 2022 Opt. Mater. 133 112832Google Scholar

    [19]

    孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202Google Scholar

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202Google Scholar

    [20]

    Zhang P J, Cai T, Zhou Q L, She G W, Liang W L, Deng Y W, Ning T Y, Shi W S, Zhang L L, Zhang C L 2022 Nano Lett. 22 1541Google Scholar

    [21]

    Zhou R Y, Wang C, Huang Y X, Xu W D, Xie L J, Ying Y B 2020 Opt. Lasers Eng. 133 106147Google Scholar

    [22]

    Yoshioka K, Minam Y, Shudo K I, Dao T D, Nagao T, Kitajima M, Takeda J, Katayama I 2015 Nano Lett. 15 1036Google Scholar

    [23]

    Lai W E, Zhu Q, Liu G, Shi G H, Gan Y C, Amini A, Cheng C 2022 J. Phys. D:Appl. Phys. 55 505103Google Scholar

    [24]

    Zhao X L, Lou J, Xu X, Yu Y, Wang G M, Qi J H, Zeng L X, He J, Liang J G, Huang Y D, Zhang D P, Chang C 2022 Adv. Opt. Mater. 10 2102589Google Scholar

    [25]

    Zhou Z, Chen Y L, Feng L S 2016 J. Infrared Millim. Terahertz Waves 37 953Google Scholar

    [26]

    Ruan Z L, Pei L, Ning T G, Wang J S, Zheng J J, Li J, Xie Y H, Zhao Q, Wang J 2020 Opt. Commun. 469 125817Google Scholar

    [27]

    Cheng L, Jin Z M, Ma Z W, Su F H, Zhao Y, Zhang Y Z, Su T Y, Sun Y, Xu X L, Meng Z, Bian Y C, Sheng Z G 2018 Adv. Opt. Mater. 6 1700877Google Scholar

    [28]

    Qiu Q X, Huang Z M 2021 Adv. Mater. 33 2008126Google Scholar

    [29]

    Weis P, L J, Pomar G, Hoh M, Reinhard B, Brodyansk A, Rahm M 2012 ACS Nano 6 9118Google Scholar

    [30]

    Lai W E, Ge C D, Yuan H, Dong Q F, Yang D R, Fang Y J 2020 Adv. Mater. Technol. 5 1901090Google Scholar

    [31]

    Wang K H, Li J S, Yao J Q 2020 J. Infrared Millim. Terahertz Waves 41 557Google Scholar

    [32]

    Yang M S, Li T T, Yan X, Liang L J, Yao H Y, Sun Z Q, Li J, Li J, Wei D Q, Wang M, Ye Y X, Song X X, Zhang H T, Yao J Q 2022 ACS Appl. Mater. Inter. 14 2155Google Scholar

    [33]

    Wang H X, Ling F R, Luo C Y, Wang C H, Xiao Y R, Chang Z Y, Wu X C, Wang W J, Yao J Q 2022 Opt. Mater. 127 112235Google Scholar

    [34]

    Chen S, Fan F, Miao Y P, He X T, Zhang K L, Chang S J 2016 Nanoscale 8 4713Google Scholar

    [35]

    Wei M Q, Zhang D N, Li Y P, Zhang L, Jin L C, Wen T L, Bai F M, Zhang H W 2019 Nanoscale Res. Lett. 14 159Google Scholar

    [36]

    Mo C, Liu J B, Wei D S, Wu H L, Wen Q Y, Ling D X 2020 Sensors 20 2198Google Scholar

    [37]

    Liu D D, Wang W, Xiong L Y, Ji H Y, Zhang B, Shen J L 2019 Opt. Mater. 96 109368Google Scholar

    [38]

    Li S H, Li J S 2018 Appl. Phys. B 124 224Google Scholar

  • [1] Ge Yi-Xuan, Yu Ting-Ting, Liang Wen-Jie. Preparation of ultra-sensitive and highly specific miniature hydrogen sensors by in situ synthesis methods. Acta Physica Sinica, 2024, 73(2): 020701. doi: 10.7498/aps.73.20231265
    [2] Du Li-Jie, Chen Jing-Wen, Wang Rong-Ming. Self-driven near infrared photoelectric detector based on C14H31O3P-Ti3C2/Au Schottky junction. Acta Physica Sinica, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [3] Wang Xing-Ping, Zhao Gang, Jiao Kang, Chen Bing, Kan Rui-Feng, Liu Jian-Guo, Ma Wei-Guang. Uncertainty of optical feedback linear cavity ringdown spectroscopy. Acta Physica Sinica, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [4] Wang Xing-Ping,  Zhao Gang,  Jiao Kang,  Chen Bing,  Kan Rui-Feng,  Liu Jian-Guo,  Ma Wei-Guang. Research on uncertainty of optical feedback linear cavity ringdown spectroscopy. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [5] Li Dan-Yang, Han Xu, Xu Guang-Yuan, Liu Xiao, Zhao Xiao-Jun, Li Geng-Wei, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie. Bi2O2Se photoconductive detector with low power consumption and high sensitivity. Acta Physica Sinica, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [6] Yan De-Xian, Li Jiu-Sheng, Wang Yi. High sensitivity terahertz refractive index sensor based on sunflower-shaped circular photonic crystal. Acta Physica Sinica, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [7] Xiao Biao, Zhang Min-Li, Wang Hong-Bo, Liu Ji-Yan. High performence visble-near infrared photovoltaic detector based on narrow bandgap polymer. Acta Physica Sinica, 2017, 66(22): 228501. doi: 10.7498/aps.66.228501
    [8] Zhang Teng-Fei, Yang Jing, Hou Yan-Xue, Wang Wei-Wei, Zhao Wei, Zhang Jing-Yuan, Cui Da-Fu, Peng Qin-Jun, Xu Zu-Yan. Sensitive detection of ultra-weak infrared image using parametric frequency up-conversion and amplification. Acta Physica Sinica, 2016, 65(1): 014209. doi: 10.7498/aps.65.014209
    [9] Xu Ting-Ting, Li Yi, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Liu Zhi-Min, Zhang Jiao, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition. Acta Physica Sinica, 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [10] Ma Jie, Wang Xiao-Feng, Xin Tong-Yu, Liu Wen-Liang, Li Yu-Qing, Wu Ji-Zhou, Xiao Lian-Tuan, Jia Suo-Tang. High sensitive photoassociation spectroscopy investigation on 0u+ (6P3/2) long-range state of ultracold cesium molecules. Acta Physica Sinica, 2015, 64(15): 153303. doi: 10.7498/aps.64.153303
    [11] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [12] Tian Wei, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan, Zhang Huai-Wu. Optically tuned wideband terahertz wave amplitude modulator based on gold-doped silicon. Acta Physica Sinica, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [13] Li Ke-Wu, Wang Zhi-Bin, Chen You-Hua, Yang Chang-Qing, Zhang Rui. High sensitive measurement of optical rotation based on photo-elastic modulation. Acta Physica Sinica, 2015, 64(18): 184206. doi: 10.7498/aps.64.184206
    [14] Xia Hua, Wu Bian, Zhang Zhi-Rong, Pang Tao, Dong Feng-Zhong, Wang Yu. Stability study on high sensitive CO monitoring in near-infrared. Acta Physica Sinica, 2013, 62(21): 214208. doi: 10.7498/aps.62.214208
    [15] Liu Zhi-Qiang, Chang Sheng-Jiang, Wang Xiao-Lei, Fan Fei, Li Wei. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film. Acta Physica Sinica, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [16] Wang Chang-Hui, Zhao Guo-Hua, Chang Sheng-Jiang. Photonic-crystal-waveguide based Mach-Zehnder interferometer for terahertz switch and modulator. Acta Physica Sinica, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [17] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [18] Sun Ji-Yong, Huang Shang-Lian, Zhang Jie, Zhang Zhi-Hai. Effect of dielectric charging on gating light modulator. Acta Physica Sinica, 2008, 57(6): 3600-3606. doi: 10.7498/aps.57.3600
    [19] CHEN YAN-SONG. EXPERIMENTAL STUDY ON INFRARED PHOTORESPONSE OF FERROELECTRIC THIN FILM DETECTOR PbZrTiO3. Acta Physica Sinica, 1998, 47(8): 1378-1382. doi: 10.7498/aps.47.1378
    [20] LI SHI-CHEN. ANALYSIS ON LiNbO3 CRYSTAL PIEZOELECTRIC RESONATORAND LASER MODE LOCKER. Acta Physica Sinica, 1993, 42(6): 1020-1026. doi: 10.7498/aps.42.1020
Metrics
  • Abstract views:  3418
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  04 April 2023
  • Accepted Date:  17 May 2023
  • Available Online:  02 June 2023
  • Published Online:  05 August 2023

/

返回文章
返回
Baidu
map