Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optically tuned wideband terahertz wave amplitude modulator based on gold-doped silicon

Tian Wei Wen Qi-Ye Chen Zhi Yang Qing-Hui Jing Yu-Lan Zhang Huai-Wu

Citation:

Optically tuned wideband terahertz wave amplitude modulator based on gold-doped silicon

Tian Wei, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan, Zhang Huai-Wu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we present a broadband terahertz wave amplitude modulator based on optically-controlled gold-doped silicon. Gold dots with a diameter of 40 μm are used as a dopant source. Experimental results indicate that interstitial Au atoms provide effective recombination centers for photo-generated electron-hole pairs in Si body, leading to a significant decrease of the minority carrier lifetime from more than 10 μs to about 110 ns. Dynamic modulation measurement at 340 GHz carrier shows a modulation depth of 21% and a maximum modulation speed of 4.3 MHz. This modulator has advantages such as wideband operation, high modulation speed, polarization insensitivity, and easy manufacture by using the large-scale integrated technology, and thus can be widely used in terahertz technology.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61131005), the Key Program Project of Chinese Ministry of Education (Grant No. 313013), the National High-tech Research and Development Progran (Grant No. 2011AA010204), the New Century Excellent Talent Foundation of Ministry of Education, China (Grant No. NCET-11-0068), Sichuan Youth S & T Foundation, China (Grant No. 2011JQ0001), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20110185130002).
    [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [3]

    Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085

    [4]

    Siegel P H Microwave Symposium Digest 2004 IEEE MTT-S International 2004 1575

    [5]

    Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J, Tribe W R 2003 International Society for Optics and Photonics in AeroSense 2003 p44

    [6]

    Kleine-Ostmann T, Dawson P, Pierz K, Hein G, Koch M 2004 Appl. Phys. Lett. 84 3555

    [7]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Marso M, Koch M 2009 J. Appl. Phys. 105 093707

    [8]

    Suzuki D, Oda S, Kawano Y 2013 Appl. Phys. Lett. 102 122102

    [9]

    Fekete L, Kadlec F, Kuzel P, Nemec H 2007 Opt. Lett. 32 680

    [10]

    Fekete L, Kadlec F, Nemec H, Kuzel P 2007 Opt. Express 15 8898

    [11]

    Seo M, Kyoung J, Park H, Koo S, Kim H, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K, Kim D 2010 Nano Lett. 10 2064

    [12]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [13]

    Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J, Kim D S 2011 Appl. Phys. Lett. 98 071105

    [14]

    Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K B, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345

    [15]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106

    [16]

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202]

    [17]

    Zhao Y, Chen C, Pan X, Zhu Y, Holtz M, Bernussi A, Fan Z 2013 J. Appl. Phys. 114 113509

    [18]

    Liu Z Q, Chang S J, Wang X L, Fan F, Li W 2013 Acta Phys. Sin 62 130702 (in Chinese) [刘志强, 常胜江, 王晓雷, 范飞, 李伟 2013 62 130702]

    [19]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [20]

    Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117

    [21]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photon. 3 148

    [22]

    Shu J, Qiu C, Astley V, Nickel D, Mittleman D M, Xu Q 2011 Opt. Express 19 26666

    [23]

    Yang Y, Huang R, Cong L, Zhu Z, Gu J, Tian Z, Singh R, Zhang S, Han J, Zhang W 2011 Appl. Phys. Lett. 98 121114

    [24]

    Yan R S, Sensale-Rodriguez B, Liu L, Jena D, Xing H G 2012 Opt. Express 20 28664

    [25]

    Gao W, Shu J, Reichel K, Nickel D V, He X, Shi G, Vajtai R, Ajayan P M, Kono J, Mittleman D M 2014 Nano Lett. 14 1242

    [26]

    Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M 2014 Appl. Phys. Lett. 104 091115

    [27]

    Larsen K, Austin D, Sandall I C, Davies D G, Revin D G, Cockburn J W, Adawi A M, Airey R J, Fry P W, Hopkinson M, Wilson L R 2012 Appl. Phys. Lett. 101 251109

    [28]

    Zhou Q L, Shi Y L, Wang A H, Li L, Zhang C L 2012 Chin. Phys. B 21 058701

    [29]

    Chan W L, Chen H T, Taylor A J, Brener I, Cich M J, Mittleman D M 2009 Appl. Phys. Lett. 94 213511

    [30]

    Shrekenhamer D, Montoya J, Krishna S, Padilla W J 2013 Adv. Opt. Mater. 1 905

    [31]

    Savo S, Shrekenhamer D, Padilla W J 2014 Adv. Opt. Mater. 2 275

    [32]

    He X J, Li T Y, Wang L, Wang J M, Jiang J X, Yang G H, Meng F Y, Wu Q 2014 J. Appl. Phys. 115 17B903

    [33]

    Degl'innocenti R, Jessop D S, Shah Y D, Sibik J, Zeitler J A, Kidambi P R, Hofmann S, Beere H E, Ritchie D A 2014 ACS Nano 8 2548

    [34]

    Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S, Padilla W J 2011 Opt. Express 19 9968

    [35]

    Weis P, Garcia-Pomar J L, Hoh M, Reinhard B, Brodyanski A, Rahm M 2012 ACS Nano 6 9118

    [36]

    Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Scientific Reports 3 3347

    [37]

    Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W 2014 Scientific Reports 4 7409

    [38]

    Collins C B, Carlson R O, Gallagher C J 1957 Phys. Rev. 105 1168

  • [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [3]

    Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085

    [4]

    Siegel P H Microwave Symposium Digest 2004 IEEE MTT-S International 2004 1575

    [5]

    Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J, Tribe W R 2003 International Society for Optics and Photonics in AeroSense 2003 p44

    [6]

    Kleine-Ostmann T, Dawson P, Pierz K, Hein G, Koch M 2004 Appl. Phys. Lett. 84 3555

    [7]

    Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Marso M, Koch M 2009 J. Appl. Phys. 105 093707

    [8]

    Suzuki D, Oda S, Kawano Y 2013 Appl. Phys. Lett. 102 122102

    [9]

    Fekete L, Kadlec F, Kuzel P, Nemec H 2007 Opt. Lett. 32 680

    [10]

    Fekete L, Kadlec F, Nemec H, Kuzel P 2007 Opt. Express 15 8898

    [11]

    Seo M, Kyoung J, Park H, Koo S, Kim H, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K, Kim D 2010 Nano Lett. 10 2064

    [12]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [13]

    Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J, Kim D S 2011 Appl. Phys. Lett. 98 071105

    [14]

    Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K B, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345

    [15]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106

    [16]

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202]

    [17]

    Zhao Y, Chen C, Pan X, Zhu Y, Holtz M, Bernussi A, Fan Z 2013 J. Appl. Phys. 114 113509

    [18]

    Liu Z Q, Chang S J, Wang X L, Fan F, Li W 2013 Acta Phys. Sin 62 130702 (in Chinese) [刘志强, 常胜江, 王晓雷, 范飞, 李伟 2013 62 130702]

    [19]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [20]

    Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117

    [21]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photon. 3 148

    [22]

    Shu J, Qiu C, Astley V, Nickel D, Mittleman D M, Xu Q 2011 Opt. Express 19 26666

    [23]

    Yang Y, Huang R, Cong L, Zhu Z, Gu J, Tian Z, Singh R, Zhang S, Han J, Zhang W 2011 Appl. Phys. Lett. 98 121114

    [24]

    Yan R S, Sensale-Rodriguez B, Liu L, Jena D, Xing H G 2012 Opt. Express 20 28664

    [25]

    Gao W, Shu J, Reichel K, Nickel D V, He X, Shi G, Vajtai R, Ajayan P M, Kono J, Mittleman D M 2014 Nano Lett. 14 1242

    [26]

    Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M 2014 Appl. Phys. Lett. 104 091115

    [27]

    Larsen K, Austin D, Sandall I C, Davies D G, Revin D G, Cockburn J W, Adawi A M, Airey R J, Fry P W, Hopkinson M, Wilson L R 2012 Appl. Phys. Lett. 101 251109

    [28]

    Zhou Q L, Shi Y L, Wang A H, Li L, Zhang C L 2012 Chin. Phys. B 21 058701

    [29]

    Chan W L, Chen H T, Taylor A J, Brener I, Cich M J, Mittleman D M 2009 Appl. Phys. Lett. 94 213511

    [30]

    Shrekenhamer D, Montoya J, Krishna S, Padilla W J 2013 Adv. Opt. Mater. 1 905

    [31]

    Savo S, Shrekenhamer D, Padilla W J 2014 Adv. Opt. Mater. 2 275

    [32]

    He X J, Li T Y, Wang L, Wang J M, Jiang J X, Yang G H, Meng F Y, Wu Q 2014 J. Appl. Phys. 115 17B903

    [33]

    Degl'innocenti R, Jessop D S, Shah Y D, Sibik J, Zeitler J A, Kidambi P R, Hofmann S, Beere H E, Ritchie D A 2014 ACS Nano 8 2548

    [34]

    Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S, Padilla W J 2011 Opt. Express 19 9968

    [35]

    Weis P, Garcia-Pomar J L, Hoh M, Reinhard B, Brodyanski A, Rahm M 2012 ACS Nano 6 9118

    [36]

    Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Scientific Reports 3 3347

    [37]

    Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W 2014 Scientific Reports 4 7409

    [38]

    Collins C B, Carlson R O, Gallagher C J 1957 Phys. Rev. 105 1168

  • [1] Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping. Encoding terahertz metasurface reflectors based on geometrical phase modulation. Acta Physica Sinica, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [2] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [3] Biological effects of terahertz waves. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211996
    [4] Yao Hai-Yun, Yan Xin, Liang Lan-Ju, Yang Mao-Sheng, Yang Qi-Li, Lü Kai-Kai, Yao Jian-Quan. Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces. Acta Physica Sinica, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [5] Ning Hui, Wang Kai-Cheng, Wang Shao-Meng, Gong Yu-Bin. Vibrational dynamics of hydrogen molecules under intense THz waves. Acta Physica Sinica, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [6] Wang Hong-Xia, Zhang Qing-Hua, Hou Wei-Jun, Wei Yi-Wei. Analysis of terahertz wave attenuated by sand and dust storms with different modes. Acta Physica Sinica, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [7] Peng Xiao-Yu, Zhou Huan. Biological effects of terahertz waves. Acta Physica Sinica, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [8] Chen Xu-Sheng, Li Jiu-Sheng. Tunable terahertz absorber with multi-defect combination embedded VO2 thin film structure. Acta Physica Sinica, 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [9] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [10] Chen Wei, Guo Li-Xin, Li Jiang-Ting, Dan Li. Propagation characteristics of terahertz waves in temporally and spatially inhomogeneous plasma sheath. Acta Physica Sinica, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [11] Mo Man-Man, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Li Sheng, Jing Yu-Lan, Zhang Huai-Wu. A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure. Acta Physica Sinica, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [12] Sun Dan-Dan, Chen Zhi, Wen Qi-Ye, Qiu Dong-Hong, Lai Wei-En, Dong Kai, Zhao Bi-Hui, Zhang Huai-Wu. VO2 low temperature deposition and terahertz transmission modulation. Acta Physica Sinica, 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [13] Li Ya-Ming, Liu Zhi, Xue Chun-Lai, Li Chuan-Bo, Cheng Bu-Wen, Wang Qi-Ming. Design of an evanescent-coupled GeSi electro-absorption modulator based on Franz-Keldysh effect. Acta Physica Sinica, 2013, 62(11): 114208. doi: 10.7498/aps.62.114208
    [14] Liu Zhi-Qiang, Chang Sheng-Jiang, Wang Xiao-Lei, Fan Fei, Li Wei. Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film. Acta Physica Sinica, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [15] Le Li-Wei, Wang Yan, Wang Yue, Wu Yu-Ming, Fu Jia-Hui, Wang Dong-Xing, Wu Qun. Theoretical study and numerical verification of terahertz radiation emitted by carbon nanotubes. Acta Physica Sinica, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [16] Li Zhong-Yang, Yao Jian-Quan, Li Jun, Bing Pi-Bin, Xu De-Gang, Wang Peng. Theoretical study of tunable terahertz radiation based on stimulated polariton scattering in zinc blende crystal. Acta Physica Sinica, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [17] Zhang Rong, Cao Jun-Cheng. Research on modulation property of photonic crystals in terahertz range. Acta Physica Sinica, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [18] Wang Yue, Wu Qun, Shi Wei, He Xun-Jun, Yin Jing-Hua. Terahertz antenna based on the carbon nano-tube in the nano-scopic domain. Acta Physica Sinica, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [19] Sun Hong-Qi, Zhao Guo-Zhong, Zhang Cun-Lin, Yang Guo-Zhen. The characteristics of terahertz radiation from InAs irradiated with femtosecond optical pulses of different wavelengths. Acta Physica Sinica, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
    [20] Liu Huan, Yao Jian-Quan, Zheng Fang-Hua, Lu Yang, Wang Peng. A dual-wavelength diode-end-pumped Nd:YAG laser operating simultaneously at 1319 and 1338nm. Acta Physica Sinica, 2008, 57(1): 230-237. doi: 10.7498/aps.57.230
Metrics
  • Abstract views:  6760
  • PDF Downloads:  922
  • Cited By: 0
Publishing process
  • Received Date:  10 August 2014
  • Accepted Date:  07 September 2014
  • Published Online:  05 January 2015

/

返回文章
返回
Baidu
map