-
提出了一种基于掺金硅的全光学宽带太赫兹波幅度调制器, 研究了金(Au)点阵掺杂后硅(Si)体内的少数载流子寿命及其太赫兹波调制特性. 实验结果表明, 掺杂的Au原子为Si中的光生电子- 空穴对提供了有效复合中心, 使其少数载流子寿命由原来十几微秒降低至110 ns左右. 利用波长915 nm 调制激光作为抽运光源, 在340 GHz载波的动态调制测试中获得4.3 MHz的调制速率和21%的调制深度, 使Si基调制器的调制速率提高了两个数量级. 该全光太赫兹调制器可工作在整个太赫兹频段内, 具有极化不敏感特性, 因而在太赫兹波高速和宽带调控方面具有重要的应用价值, 也是构建光控型Si 基太赫兹功能器件的重要基础.In this paper, we present a broadband terahertz wave amplitude modulator based on optically-controlled gold-doped silicon. Gold dots with a diameter of 40 μm are used as a dopant source. Experimental results indicate that interstitial Au atoms provide effective recombination centers for photo-generated electron-hole pairs in Si body, leading to a significant decrease of the minority carrier lifetime from more than 10 μs to about 110 ns. Dynamic modulation measurement at 340 GHz carrier shows a modulation depth of 21% and a maximum modulation speed of 4.3 MHz. This modulator has advantages such as wideband operation, high modulation speed, polarization insensitivity, and easy manufacture by using the large-scale integrated technology, and thus can be widely used in terahertz technology.
-
Keywords:
- terahertz wave /
- modulator /
- optically tuned /
- gold-doped Silicon
[1] Tonouchi M 2007 Nat. Photon. 1 97
[2] Federici J, Moeller L 2010 J. Appl. Phys. 107 111101
[3] Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085
[4] Siegel P H Microwave Symposium Digest 2004 IEEE MTT-S International 2004 1575
[5] Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J, Tribe W R 2003 International Society for Optics and Photonics in AeroSense 2003 p44
[6] Kleine-Ostmann T, Dawson P, Pierz K, Hein G, Koch M 2004 Appl. Phys. Lett. 84 3555
[7] Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Marso M, Koch M 2009 J. Appl. Phys. 105 093707
[8] Suzuki D, Oda S, Kawano Y 2013 Appl. Phys. Lett. 102 122102
[9] Fekete L, Kadlec F, Kuzel P, Nemec H 2007 Opt. Lett. 32 680
[10] Fekete L, Kadlec F, Nemec H, Kuzel P 2007 Opt. Express 15 8898
[11] Seo M, Kyoung J, Park H, Koo S, Kim H, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K, Kim D 2010 Nano Lett. 10 2064
[12] Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111
[13] Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J, Kim D S 2011 Appl. Phys. Lett. 98 071105
[14] Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K B, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345
[15] Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106
[16] Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202]
[17] Zhao Y, Chen C, Pan X, Zhu Y, Holtz M, Bernussi A, Fan Z 2013 J. Appl. Phys. 114 113509
[18] Liu Z Q, Chang S J, Wang X L, Fan F, Li W 2013 Acta Phys. Sin 62 130702 (in Chinese) [刘志强, 常胜江, 王晓雷, 范飞, 李伟 2013 62 130702]
[19] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597
[20] Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117
[21] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photon. 3 148
[22] Shu J, Qiu C, Astley V, Nickel D, Mittleman D M, Xu Q 2011 Opt. Express 19 26666
[23] Yang Y, Huang R, Cong L, Zhu Z, Gu J, Tian Z, Singh R, Zhang S, Han J, Zhang W 2011 Appl. Phys. Lett. 98 121114
[24] Yan R S, Sensale-Rodriguez B, Liu L, Jena D, Xing H G 2012 Opt. Express 20 28664
[25] Gao W, Shu J, Reichel K, Nickel D V, He X, Shi G, Vajtai R, Ajayan P M, Kono J, Mittleman D M 2014 Nano Lett. 14 1242
[26] Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M 2014 Appl. Phys. Lett. 104 091115
[27] Larsen K, Austin D, Sandall I C, Davies D G, Revin D G, Cockburn J W, Adawi A M, Airey R J, Fry P W, Hopkinson M, Wilson L R 2012 Appl. Phys. Lett. 101 251109
[28] Zhou Q L, Shi Y L, Wang A H, Li L, Zhang C L 2012 Chin. Phys. B 21 058701
[29] Chan W L, Chen H T, Taylor A J, Brener I, Cich M J, Mittleman D M 2009 Appl. Phys. Lett. 94 213511
[30] Shrekenhamer D, Montoya J, Krishna S, Padilla W J 2013 Adv. Opt. Mater. 1 905
[31] Savo S, Shrekenhamer D, Padilla W J 2014 Adv. Opt. Mater. 2 275
[32] He X J, Li T Y, Wang L, Wang J M, Jiang J X, Yang G H, Meng F Y, Wu Q 2014 J. Appl. Phys. 115 17B903
[33] Degl'innocenti R, Jessop D S, Shah Y D, Sibik J, Zeitler J A, Kidambi P R, Hofmann S, Beere H E, Ritchie D A 2014 ACS Nano 8 2548
[34] Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S, Padilla W J 2011 Opt. Express 19 9968
[35] Weis P, Garcia-Pomar J L, Hoh M, Reinhard B, Brodyanski A, Rahm M 2012 ACS Nano 6 9118
[36] Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Scientific Reports 3 3347
[37] Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W 2014 Scientific Reports 4 7409
[38] Collins C B, Carlson R O, Gallagher C J 1957 Phys. Rev. 105 1168
-
[1] Tonouchi M 2007 Nat. Photon. 1 97
[2] Federici J, Moeller L 2010 J. Appl. Phys. 107 111101
[3] Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M 1999 Appl. Phys. B 68 1085
[4] Siegel P H Microwave Symposium Digest 2004 IEEE MTT-S International 2004 1575
[5] Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J, Tribe W R 2003 International Society for Optics and Photonics in AeroSense 2003 p44
[6] Kleine-Ostmann T, Dawson P, Pierz K, Hein G, Koch M 2004 Appl. Phys. Lett. 84 3555
[7] Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Marso M, Koch M 2009 J. Appl. Phys. 105 093707
[8] Suzuki D, Oda S, Kawano Y 2013 Appl. Phys. Lett. 102 122102
[9] Fekete L, Kadlec F, Kuzel P, Nemec H 2007 Opt. Lett. 32 680
[10] Fekete L, Kadlec F, Nemec H, Kuzel P 2007 Opt. Express 15 8898
[11] Seo M, Kyoung J, Park H, Koo S, Kim H, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K, Kim D 2010 Nano Lett. 10 2064
[12] Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111
[13] Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J, Kim D S 2011 Appl. Phys. Lett. 98 071105
[14] Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K B, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345
[15] Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106
[16] Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 62 017202]
[17] Zhao Y, Chen C, Pan X, Zhu Y, Holtz M, Bernussi A, Fan Z 2013 J. Appl. Phys. 114 113509
[18] Liu Z Q, Chang S J, Wang X L, Fan F, Li W 2013 Acta Phys. Sin 62 130702 (in Chinese) [刘志强, 常胜江, 王晓雷, 范飞, 李伟 2013 62 130702]
[19] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597
[20] Chen H T, Palit S, Tyler T, Bingham C M, Zide J M O, O'Hara J F, Smith D R, Gossard A C, Averitt R D, Padilla W J, Jokerst N M, Taylor A J 2008 Appl. Phys. Lett. 93 091117
[21] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photon. 3 148
[22] Shu J, Qiu C, Astley V, Nickel D, Mittleman D M, Xu Q 2011 Opt. Express 19 26666
[23] Yang Y, Huang R, Cong L, Zhu Z, Gu J, Tian Z, Singh R, Zhang S, Han J, Zhang W 2011 Appl. Phys. Lett. 98 121114
[24] Yan R S, Sensale-Rodriguez B, Liu L, Jena D, Xing H G 2012 Opt. Express 20 28664
[25] Gao W, Shu J, Reichel K, Nickel D V, He X, Shi G, Vajtai R, Ajayan P M, Kono J, Mittleman D M 2014 Nano Lett. 14 1242
[26] Karl N, Reichel K, Chen H T, Taylor A J, Brener I, Benz A, Reno J L, Mendis R, Mittleman D M 2014 Appl. Phys. Lett. 104 091115
[27] Larsen K, Austin D, Sandall I C, Davies D G, Revin D G, Cockburn J W, Adawi A M, Airey R J, Fry P W, Hopkinson M, Wilson L R 2012 Appl. Phys. Lett. 101 251109
[28] Zhou Q L, Shi Y L, Wang A H, Li L, Zhang C L 2012 Chin. Phys. B 21 058701
[29] Chan W L, Chen H T, Taylor A J, Brener I, Cich M J, Mittleman D M 2009 Appl. Phys. Lett. 94 213511
[30] Shrekenhamer D, Montoya J, Krishna S, Padilla W J 2013 Adv. Opt. Mater. 1 905
[31] Savo S, Shrekenhamer D, Padilla W J 2014 Adv. Opt. Mater. 2 275
[32] He X J, Li T Y, Wang L, Wang J M, Jiang J X, Yang G H, Meng F Y, Wu Q 2014 J. Appl. Phys. 115 17B903
[33] Degl'innocenti R, Jessop D S, Shah Y D, Sibik J, Zeitler J A, Kidambi P R, Hofmann S, Beere H E, Ritchie D A 2014 ACS Nano 8 2548
[34] Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt R D, Sonkusale S, Padilla W J 2011 Opt. Express 19 9968
[35] Weis P, Garcia-Pomar J L, Hoh M, Reinhard B, Brodyanski A, Rahm M 2012 ACS Nano 6 9118
[36] Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Scientific Reports 3 3347
[37] Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W 2014 Scientific Reports 4 7409
[38] Collins C B, Carlson R O, Gallagher C J 1957 Phys. Rev. 105 1168
计量
- 文章访问数: 6759
- PDF下载量: 922
- 被引次数: 0