-
The emergence and development of ultrafast intense lasers and attosecond measurement techniques have made it possible to observe and control the motions of electrons on a timescale of attoseconds and a spatial scale of atoms. With the improvement of experimental measurement accuracy, higher requirements are put forward for the accuracy of theoretical calculation methods. Extracting temporal and spatial information about ultrafast dynamics from experimental results through using theoretical models presents a significant challenge. Compared with the exact solutions of the time-dependent Schrödinger equation, the Feynman path-integral method for strong-field dynamics calculations offers a simpler model and higher computational efficiency. The electronic wave packet is regarded as a particle with different initial states, and by analyzing the motion of the particle, the causes of various nonlinear physical phenomena in strong fields can be clarified. This work introduces the saddle point approximation into strong field dynamics calculations based on the strong field approximation theory. Furthermore, the Coulomb-corrected strong field approximation method, trajectory-based Coulomb-corrected strong field approximation method, and Coulomb quantum trajectory strong field approximation method are presented in detail. This review aims to provide relevant methods and literature references for studying strong field dynamics theoretical calculations and also to present some ideas for developing new algorithms.
[1] Schrödinger E 1926 Ann. Phys. 79 361
[2] Born M, Jordan P 1925 Zeit. Phys. 34 858Google Scholar
[3] Feynman R P 1948 Rev. Mod. Phys. 20 367Google Scholar
[4] Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw Hill Press) p77
[5] Maiman T H 1960 Nature 187 493Google Scholar
[6] Voronov G S, Delone N B 1965 JETP Lett. 1 66
[7] Agostini P, Barjot G, Bonnal J, Mainfray G, Manus C, Multiphoton J M 1968 IEEE J. Quantum Electron. 4 667Google Scholar
[8] Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar
[9] Keldysh L V 1965 Sov. Phys. JETP. 20 1307
[10] Faisal F H M 1973 J. Phys. B: At. Mol. Opt. Phys. 6 L89
[11] Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar
[12] Perelomov A M, Popov V S, Terent’ev M V 1966 Sov. Phys. JETP. 23 924
[13] Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP. 64 1191
[14] Lewenstein M, Balcou P, Ivanov M Y, L’ Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar
[15] Mosert V, Bauer D 2016 Comput. Phys. Commun. 207 452Google Scholar
[16] Tao L, Scrinzi A 2012 New J. Phys. 14 013021Google Scholar
[17] Jain M, Tzoar N 1978 Phys. Rev. A 18 538Google Scholar
[18] Duchateau G, Cormier E, Gayet R 2002 Phys. Rev. A 66 023412Google Scholar
[19] Yu S G, Wang Y L, Lai X Y, Huang Y Y, Quan W, Liu X J 2016 Phys. Rev. A 94 033418Google Scholar
[20] Yudin G L, Chelkowski S, Bandrauk A D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 L17Google Scholar
[21] Popruzhenko S V, Paulus G G, Bauer D 2008 Phys. Rev. A 77 053409Google Scholar
[22] Popruzhenko S V, Bauer D 2008 J. Mod. Optic. 55 2573Google Scholar
[23] Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010 Phys. Rev. Lett. 105 253002Google Scholar
[24] Yan T M, Bauer D 2012 Phys. Rev. A 86 053403Google Scholar
[25] Lai X Y, Poli C, Schomerus H, Figueira de Morisson Faria C 2015 Phys. Rev. A 92 043407Google Scholar
[26] Lai X Y, Yu S G, Huang Y Y, Hua L Q, Gong C, Quan W, Figueira de Morisson Faria C, Liu X J 2017 Phys. Rev. A 96 013414Google Scholar
[27] Corkum P B, Burnett N H, Brunel F 1989 Phys. Rev. Lett. 62 1259Google Scholar
[28] Salières P, L’Huillier A, Lewenstein M 1995 Phys. Rev. Lett. 74 3776Google Scholar
[29] Salières P, Carré B, Le Déroff L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milosÿevic D B 2001 Science 292 902Google Scholar
[30] Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logan P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, Van Der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y U, Smirnova O, Bauer D, Porruzhenko S V, Vrakking M J J 2011 Science 331 61Google Scholar
[31] Li M, Geng J W, Liu H, Deng Y, Wu C Y, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002Google Scholar
[32] Hu B, Liu J, Chen S 1997 Phys. Lett. A. 236 533Google Scholar
[33] Shvetsov-Shilovski N I, Lein M, Madsen L B, Räsänen E, Lemell C, Burgdörfer J, Arbó D G, Tókési K 2016 Phys. Rev. A 94 013415Google Scholar
[34] Song X, Lin C, Sheng Z H, Liu P, Chen Z J, Yang W F, Hu S L, Lin C D, Chen J 2016 Sci. Rep. 6 28392Google Scholar
[35] Liu M M, Li M, Wu C Y, Gong Q H, André Staudte, Liu Y Q 2016 Phys. Rev. Lett. 116 163004Google Scholar
[36] Liu M M, Liu Y Q 2017 J. Phys. B: At. Mol. Opt. Phys. 50 105602Google Scholar
[37] Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar
[38] Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J, Yang W F 2018 Phys. Rev. Lett. 121 103201Google Scholar
[39] Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar
[40] Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L Ph H, Jahnke T, Dörner R, Kunitski M, Eckart S 2021 Nat. Commun. 12 1697Google Scholar
[41] Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M Smirnova O 2015 Nat. Phys. 11 503Google Scholar
[42] Tong J H, Liu X W, Dong W H, Jiang W Y, Zhu M, Xu Y D, Zuo Z T, Lu P F, Gong X C, Song X H, Yang W F, Wu J 2022 Phys. Rev. Lett. 129 173201Google Scholar
[43] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp146–149
[44] Bauer D, Milošević D B, Becker W 2005 Phys. Rev. A 72 023415Google Scholar
[45] Bleistein N, Handelsman R A 1986 Asymptotic Expansions of Integrals (Dover: Dover Publications) p252
[46] Booth A D 1949 J. Mech. Appl. Math. 2 460Google Scholar
[47] Booth A D 1947 Nature 160 196Google Scholar
[48] Huang L, Wu T 2018 Theor. Biol. Med. Modell. 15 22Google Scholar
[49] Lai X Y, Figueira de Morisson Faria C 2013 Phys. Rev. A 88 013406Google Scholar
[50] Maxwell A S 2019 Ph. D. Dissertation (London: University College London
[51] Yang S D, Song X H, Liu X W, Zhang H D, Shi G L, Yu X H, Tang Y J, Chen J, Yang W F 2020 Laser Phys. Lett. 17 095301Google Scholar
[52] Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35Google Scholar
[53] Paul M, Gräfe S 2019 Phys. Rev. A 99 053414Google Scholar
[54] Liu M M, Shao Y, Han M, Ge P P, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2018 Phys. Rev. Lett. 120 043201Google Scholar
[55] Yan T M 2012 Ph. D. Dissertation (Germany: Universität Rostock
[56] Arbó D G, Ishikawa K L, Persson E, Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 24Google Scholar
[57] Milošević D B, Paulus G G, Bauer D, Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203Google Scholar
[58] Becker A, Faisal F H M 2005 J. Phys. B: At. Mol. Opt. Phys. 38 R1Google Scholar
[59] Popov V S 2004 Phys. Usp. 47 855Google Scholar
[60] Xiao X R, Wang M X, Xiong W H, Peng L Y 2016 Phys. Rev. E 94 053310Google Scholar
[61] 李庆扬, 王能超, 易大义 2008 数值分析(第五版) (北京: 清华大学出版社) 第286页
Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (5th Ed.) (Beijing: Tsinghua University Press) p286
[62] Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V, Becker W 2009 Laser Phys. 19 1550Google Scholar
[63] Shvetsov-Shilovski N I, Dimitrovski D, Madsen L B 2012 Phys. Rev. A 85 023428Google Scholar
-
图 2 牛顿迭代法图示. 蓝色曲线为方程
$ f\left(x\right) $ 的解, 红色直线为蓝色曲线在自变量$ x $ 处的切线,$ {x}_{*} $ 为方程$ f\left(x\right)=0 $ 时需寻找的解Figure 2. Illustration of Newton’s method. Blue curve represents value of function
$ f\left(x\right) $ , and red lines represent tangent to blue curve at independent variable$ x $ , which is solution$ {x}_{*} $ when$ f\left(x\right)=0 $ .图 3 4个样本的
$ \left|f\right| $ 随迭代次数的变化. 蓝线、橙线、黄线和紫线分别代表初始试探解为$ ({t}_{{\rm{r}}}=20.1, {t}_{{\rm{i}}}=80.1) $ 、$ ({t}_{{\rm{r}}}= $ $ 40.1, {t}_{{\rm{i}}}=80.1) $ ,$ ({t}_{{\rm{r}}}=60.1, {t}_{{\rm{i}}}=80.1) $ 和$ ({t}_{{\rm{r}}}=120.1, {t}_{{\rm{i}}}= $ $ 80.1) $ 时, 随迭代次数增加函数值$ \left|f\right| $ 的变化.Figure 3. Variation of
$ \left|f\right| $ with the number of iterations n for four samples. The blue, orange, yellow, and purple lines represent the changes in function values$ \left|f\right| $ with increasing iteration times when the initial trial solutions are$ ({t}_{{\rm{r}}}=20.1, {t}_{{\rm{i}}}=80.1) $ ,$ ({t}_{{\rm{r}}}=40.1, {t}_{{\rm{i}}}=80.1) $ ,$ ({t}_{{\rm{r}}}=60.1, $ $ {t}_{{\rm{i}}}= 80.1) $ and$ ({t}_{{\rm{r}}}=120.1, {t}_{{\rm{i}}}=80.1) $ , respectively.图 4 复平面的路径积分.
$ {I}_{1} $ 描述了沿虚时间轴的积分, 步长为$ {\rm{i}}\Delta \tau $ .$ {I}_{2} $ 描述了沿实时间轴的积分, 步长为$ \Delta \tau $ Figure 4. Path integral on complex plane.
$ {I}_{1} $ describes integration along imaginary time axis with a step size of$ {\rm{i}}\Delta \tau $ , and$ {I}_{2} $ describes the integration along real time axis with a step size of$ \Delta \tau $ .图 5 费曼路径积分思想示意图. A与B分别为粒子的初始点与末点, 绿色虚线为粒子的可能路径 (a) 两个位置之间存在一个挡板双缝; (b) 两个位置间存在两个多缝挡板; (c) 两个位置存在无数个狭缝, 此时粒子可以从A点经历任意位置到达B点
Figure 5. Schematic diagram of Feynman’s path integral concept. A and B represent initial and final points of a particle, and the green dashed line represents the possible paths of particle: (a) There is a double-slit barrier between two positions; (b) there are multiple slit barriers between two positions; (c) there are infinite slits between two positions, and particle can reach point B from point A through any intermediate position.
-
[1] Schrödinger E 1926 Ann. Phys. 79 361
[2] Born M, Jordan P 1925 Zeit. Phys. 34 858Google Scholar
[3] Feynman R P 1948 Rev. Mod. Phys. 20 367Google Scholar
[4] Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw Hill Press) p77
[5] Maiman T H 1960 Nature 187 493Google Scholar
[6] Voronov G S, Delone N B 1965 JETP Lett. 1 66
[7] Agostini P, Barjot G, Bonnal J, Mainfray G, Manus C, Multiphoton J M 1968 IEEE J. Quantum Electron. 4 667Google Scholar
[8] Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar
[9] Keldysh L V 1965 Sov. Phys. JETP. 20 1307
[10] Faisal F H M 1973 J. Phys. B: At. Mol. Opt. Phys. 6 L89
[11] Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar
[12] Perelomov A M, Popov V S, Terent’ev M V 1966 Sov. Phys. JETP. 23 924
[13] Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP. 64 1191
[14] Lewenstein M, Balcou P, Ivanov M Y, L’ Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar
[15] Mosert V, Bauer D 2016 Comput. Phys. Commun. 207 452Google Scholar
[16] Tao L, Scrinzi A 2012 New J. Phys. 14 013021Google Scholar
[17] Jain M, Tzoar N 1978 Phys. Rev. A 18 538Google Scholar
[18] Duchateau G, Cormier E, Gayet R 2002 Phys. Rev. A 66 023412Google Scholar
[19] Yu S G, Wang Y L, Lai X Y, Huang Y Y, Quan W, Liu X J 2016 Phys. Rev. A 94 033418Google Scholar
[20] Yudin G L, Chelkowski S, Bandrauk A D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 L17Google Scholar
[21] Popruzhenko S V, Paulus G G, Bauer D 2008 Phys. Rev. A 77 053409Google Scholar
[22] Popruzhenko S V, Bauer D 2008 J. Mod. Optic. 55 2573Google Scholar
[23] Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010 Phys. Rev. Lett. 105 253002Google Scholar
[24] Yan T M, Bauer D 2012 Phys. Rev. A 86 053403Google Scholar
[25] Lai X Y, Poli C, Schomerus H, Figueira de Morisson Faria C 2015 Phys. Rev. A 92 043407Google Scholar
[26] Lai X Y, Yu S G, Huang Y Y, Hua L Q, Gong C, Quan W, Figueira de Morisson Faria C, Liu X J 2017 Phys. Rev. A 96 013414Google Scholar
[27] Corkum P B, Burnett N H, Brunel F 1989 Phys. Rev. Lett. 62 1259Google Scholar
[28] Salières P, L’Huillier A, Lewenstein M 1995 Phys. Rev. Lett. 74 3776Google Scholar
[29] Salières P, Carré B, Le Déroff L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milosÿevic D B 2001 Science 292 902Google Scholar
[30] Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logan P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, Van Der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y U, Smirnova O, Bauer D, Porruzhenko S V, Vrakking M J J 2011 Science 331 61Google Scholar
[31] Li M, Geng J W, Liu H, Deng Y, Wu C Y, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002Google Scholar
[32] Hu B, Liu J, Chen S 1997 Phys. Lett. A. 236 533Google Scholar
[33] Shvetsov-Shilovski N I, Lein M, Madsen L B, Räsänen E, Lemell C, Burgdörfer J, Arbó D G, Tókési K 2016 Phys. Rev. A 94 013415Google Scholar
[34] Song X, Lin C, Sheng Z H, Liu P, Chen Z J, Yang W F, Hu S L, Lin C D, Chen J 2016 Sci. Rep. 6 28392Google Scholar
[35] Liu M M, Li M, Wu C Y, Gong Q H, André Staudte, Liu Y Q 2016 Phys. Rev. Lett. 116 163004Google Scholar
[36] Liu M M, Liu Y Q 2017 J. Phys. B: At. Mol. Opt. Phys. 50 105602Google Scholar
[37] Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar
[38] Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J, Yang W F 2018 Phys. Rev. Lett. 121 103201Google Scholar
[39] Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar
[40] Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L Ph H, Jahnke T, Dörner R, Kunitski M, Eckart S 2021 Nat. Commun. 12 1697Google Scholar
[41] Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M Smirnova O 2015 Nat. Phys. 11 503Google Scholar
[42] Tong J H, Liu X W, Dong W H, Jiang W Y, Zhu M, Xu Y D, Zuo Z T, Lu P F, Gong X C, Song X H, Yang W F, Wu J 2022 Phys. Rev. Lett. 129 173201Google Scholar
[43] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp146–149
[44] Bauer D, Milošević D B, Becker W 2005 Phys. Rev. A 72 023415Google Scholar
[45] Bleistein N, Handelsman R A 1986 Asymptotic Expansions of Integrals (Dover: Dover Publications) p252
[46] Booth A D 1949 J. Mech. Appl. Math. 2 460Google Scholar
[47] Booth A D 1947 Nature 160 196Google Scholar
[48] Huang L, Wu T 2018 Theor. Biol. Med. Modell. 15 22Google Scholar
[49] Lai X Y, Figueira de Morisson Faria C 2013 Phys. Rev. A 88 013406Google Scholar
[50] Maxwell A S 2019 Ph. D. Dissertation (London: University College London
[51] Yang S D, Song X H, Liu X W, Zhang H D, Shi G L, Yu X H, Tang Y J, Chen J, Yang W F 2020 Laser Phys. Lett. 17 095301Google Scholar
[52] Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35Google Scholar
[53] Paul M, Gräfe S 2019 Phys. Rev. A 99 053414Google Scholar
[54] Liu M M, Shao Y, Han M, Ge P P, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2018 Phys. Rev. Lett. 120 043201Google Scholar
[55] Yan T M 2012 Ph. D. Dissertation (Germany: Universität Rostock
[56] Arbó D G, Ishikawa K L, Persson E, Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 24Google Scholar
[57] Milošević D B, Paulus G G, Bauer D, Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203Google Scholar
[58] Becker A, Faisal F H M 2005 J. Phys. B: At. Mol. Opt. Phys. 38 R1Google Scholar
[59] Popov V S 2004 Phys. Usp. 47 855Google Scholar
[60] Xiao X R, Wang M X, Xiong W H, Peng L Y 2016 Phys. Rev. E 94 053310Google Scholar
[61] 李庆扬, 王能超, 易大义 2008 数值分析(第五版) (北京: 清华大学出版社) 第286页
Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (5th Ed.) (Beijing: Tsinghua University Press) p286
[62] Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V, Becker W 2009 Laser Phys. 19 1550Google Scholar
[63] Shvetsov-Shilovski N I, Dimitrovski D, Madsen L B 2012 Phys. Rev. A 85 023428Google Scholar
Catalog
Metrics
- Abstract views: 3991
- PDF Downloads: 180
- Cited By: 0