Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of modeling saddle point movement driven by multiple radio frequency fields

MAI Jun WANG Zhao YUAN Chang XIAO Jie MA Wei WANG Xu

Citation:

A method of modeling saddle point movement driven by multiple radio frequency fields

MAI Jun, WANG Zhao, YUAN Chang, XIAO Jie, MA Wei, WANG Xu
cstr: 32037.14.aps.74.20241552
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In an integrated ion trap with integrated optical modules, the problem of misalignment between the optical focus and the trapped ion saddle point is very likely to occur, which seriously hinders the practicality of the experimental method. To solve this problem, the multi-RF field method can be used to compensate for and move the ion saddle point position. However, in the actual experimental process, the application of the multi-RF method requires the knowledge of the amplitude of the RF voltage to be loaded corresponding to the actual spatial position of the saddle point. Therefore, a set of mathematical models is established to describe the relationship. The accuracy of the model determines the control accuracy of the spatial position of the saddle point, and the simplicity of the model determines the speed of the solution process. Therefore, in this work, a mathematical model of the relationship between the multi-RF electric field voltage and the saddle point position is proposed based on the numerically simulated electric field distribution and the polynomial fitting method. It can quickly and accurately give a mathematical description between the two without considering the physical mechanism or model. Numerical method is adopted to verify and discuss the correctness and scope of application of the model, and can quickly and accurately provide the amplitude of the RF voltage to be loaded in the experiment, causing the saddle point to move and coincide with the optical focus. This method greatly reduces the time delay caused by the solution and improves the feedback loop bandwidth during the movement of the saddle point position.
      Corresponding author: WANG Zhao, joeshardow@gmail.com ; WANG Xu, xuwang@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12474422, 11904423), the 100-level Selection and Training of High-level Innovative Talents of Guizhou Province, China (Grant No. GCC[2023]090), and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2020A1515010864).
    [1]

    Siverns J D, Quraishi Q 2017 Quantum Inf. Process. 16 314Google Scholar

    [2]

    Ding X Y, Yu Q, Lu X Q, Wang X H, Huo X M, Qian X 2023 Anal. Chem. 95 2348Google Scholar

    [3]

    Papanastasiou D, Kounadis D, Lekkas A, et al. 2022 J. Am. Soc. Mass Spectrom. 33 1990Google Scholar

    [4]

    Ozawa A, Davila-Rodriguez J, Bounds J R, Schuessler H A, Hänsch T W, Udem T 2017 Nat. Commun. 8 44Google Scholar

    [5]

    Amitrano V, Roggero A, Luchi P, Turro F, Vespucci L, Pederiva F 2023 Phys. Rev. D 107 023007Google Scholar

    [6]

    Monroe C, Campbell W C, Duan L M, et al. 2021 Rev. Mod. Phys. 93 025001Google Scholar

    [7]

    Niroula P, Shaydulin R, Yalovetzky R, Minssen P, Herman D, Hu S, Pistoia M 2022 Sci. Rep. 12 17171Google Scholar

    [8]

    Pogorelov I, Feldker T, Marciniak C D, et al. 2021 PRX Quantum 2 020343Google Scholar

    [9]

    Wang P P, Luan C Y, Qiao M, Um M, Zhang J H, Wang Y, Yuan X, Gu M L, Zhang J N, Kim K 2021 Nat. Commun. 12 233Google Scholar

    [10]

    Manovitz T, Shapira Y, Gazit L, Akerman N, Ozeri R 2022 PRX Quantum 3 010347Google Scholar

    [11]

    Mehta K K, Bruzewicz C D, McConnell R, Ram R J, Sage J M, Chiaverini J 2016 Nature Nanotech. 11 1066Google Scholar

    [12]

    Ballance C J, Harty T P, Linke N M, Sepiol M A, Lucas D M 2016 Phys. Rev. Lett. 117 060504Google Scholar

    [13]

    Rudolph M S, Toussaint N B, Katabarwa A, Johri S, Peropadre B, Perdomo-Ortiz A 2022 Phys. Rev. X 12 031010Google Scholar

    [14]

    范桁 2018 67 120301Google Scholar

    Fan H 2018 Acta Physica Sinica 67 120301Google Scholar

    [15]

    Murali P, Debroy D M, Brown K R, Martonosi M 2022 Commun. ACM 65 101Google Scholar

    [16]

    Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Moses S A, Allman M, Baldwin C, Foss-Feig M, Hayes D, Mayer K 2021 Nature 592 209Google Scholar

    [17]

    Ivory M, Setzer W J, Karl N, McGuinness H, DeRose C, Blain M, Stick D, Gehl M, Parazzoli L P 2021 Phys. Rev. X 11 041033Google Scholar

    [18]

    Malinowski M, Allcock D T C, Ballance C J 2023 PRX Quantum 4 040313Google Scholar

    [19]

    Romaszko Z D, Hong S, Siegele M, Puddy R K, Lebrun-Gallagher F R, Weidt S, Hensinger W K 2020 Nat. Rev. Phys. 2 285Google Scholar

    [20]

    Wang Y H, Li Y, Yin Z Q, Zeng B 2018 npj Quantum Inf. 4 46Google Scholar

    [21]

    Ryan-Anderson C, Bohnet J G, Lee K, et al. 2021 Phys. Rev. X 11 041058Google Scholar

    [22]

    Mehta K K, Zhang C, Malinowski M, Nguyen T L, Stadler M, Home J P 2020 Nature 586 533Google Scholar

    [23]

    Bao X Y, Cui J M, Fang D, Chen W B, Wang J, Huang Y F, Li C F, Guo G C 2023 JUSTC 53 0705Google Scholar

    [24]

    Van Rynbach A, Maunz P, Kim J 2016 Appl. Phys. Lett. 109 221108Google Scholar

    [25]

    Wang Z, Wang B R, Ma Q L, Guo J Y, Li M S, Wang Y, Rao X X, Huang Z Q, Luo L 2020 arXiv: 2004.08845 [quant-ph]

    [26]

    Holz P C, Auchter S, Stocker G, Valentini M, Lakhmanskiy K, Rössler C, Stampfer P, Sgouridis S, Aschauer E, Colombe Y, Blatt R 2020 Adv. Quantum Technol. 3 2000031Google Scholar

    [27]

    Liu Y R, Wang Z, Xiang Z X, Wang Q K, Hu T Y, Wang X 2024 Chip 3 100078Google Scholar

    [28]

    Hong S, Lee M, Cheon H, Kim T, Cho D I 2016 Sensors 16 616Google Scholar

    [29]

    Read F H, Bowring N J 2011 Nucl. Instr. and Meth. A 645 273Google Scholar

    [30]

    House M G 2008 Phys. Rev. A 78 033402Google Scholar

    [31]

    Lauprêtre T, Achi B, Groult L, Carry É, Kersalé Y, Delehaye M, Hafiz M A, Lacroûte C 2023 Appl. Phys. B 129 37Google Scholar

    [32]

    Zhang X, Ou B, Chen T, Xie Y, Wu W, Chen P 2020 Phys. Scr. 95 045103Google Scholar

    [33]

    Zhang C, Mehta K K, Home J P 2022 New J. Phys. 24 073030Google Scholar

    [34]

    王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿 2022 71 133701Google Scholar

    Wang C X, He R, Li R R, Chen Y, Fang D, Cui J M, Huang Y F, Li C F, Guo G C 2022 Acta Phys. Sin. 71 133701Google Scholar

    [35]

    Kumph M, Holz P, Langer K, Meraner M, Niedermayr M, Brownnutt M, Blatt R 2016 New J. Phys. 18 023047Google Scholar

    [36]

    Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53Google Scholar

    [37]

    Niedermayr M, Lakhmanskiy K, Kumph M, Partel S, Edlinger J, Brownnutt M, Blatt R 2014 New J. Phys. 16 113068Google Scholar

    [38]

    吴宇恺, 段路明 2023 72 230302Google Scholar

    Wu Y K, Duan L M 2023 Acta Phys. Sin. 72 230302Google Scholar

  • 图 1  建立多射频场驱动鞍点移动的基本电极结构 (a) 射频电极经分段处理的表面离子阱结构; (b) 调节多射频电压幅值驱动鞍点径向移动

    Figure 1.  Establishing the basic electrode structure for multi-RF field driven saddle point movement: (a) Surface ion trap structure after radio frequency electrode segmentation treatment; (b) adjusting the amplitude of multiple RF voltages to drive the radial movement of the saddle point.

    图 2  赝势分布情况 (a) 研究对象Z = 0处初始赝势分布; (b) 径向面内赝势梯度变化最小方向上的赝势分布

    Figure 2.  Pseudopotential distribution: (a) Initial pseudopotential distribution on the radial plane Z = 0; (b) pseudopotential distribution in the direction with the smallest pseudopotential gradient change in the radial plane.

    图 3  射频电极组各电极RFi (i = 0—2)依次施加单位电压时, Z = 0处电场分布情况 (a) RF0作用下X方向的电场分布EXRF0; (b) RF1作用下X方向的电场分布EXRF1; (c) RF2作用下X方向的电场分布EXRF2; (d) RF0作用下Y方向的电场分布EYRF0; (e) RF1作用下Y方向的电场分布EYRF1; (f) RF2作用下Y方向的电场分布EYRF2

    Figure 3.  When unit voltage is applied to each electrode RFi (i = 0—2) of the RF electrode group in turn, the electric field distribution at Z = 0: (a) Electric field distribution EXRF0 in the X direction under the action of electrode RF0; (b) electric field distribution EXRF1 in the X direction under the action of electrode RF1; (c) electric field distribution EXRF2 in the X direction under the action of electrode RF2; (d) electric field distribution in the Y direction under the action of electrode RF0; (e) electric field distribution in the Y direction under the action of electrode RF1; (f) electric field distribution in the Y direction under the action of electrode RF2.

    图 4  鞍点模拟移动量ΔXBEM, ΔYBEM与目标移动量ΔXobj, ΔYobj间的误差情况 (a) 模型1的Xerr分布; (b) 模型1的Yerr分布

    Figure 4.  Error between the simulated displacements of the saddle point (ΔXBEM, ΔYBEM) and the target displacements (ΔXobj, ΔYobj): (a) Xerr distribution of model 1; (b) Yerr distribution of model 1.

    图 5  鞍点模拟位移量(ΔXBEM, ΔYBEM)与目标移动量(ΔXobj, ΔYobj)间的误差情况 (a) 模型2的Xerr分布; (b) 模型2的Yerr分布

    Figure 5.  Error between the simulated displacements of the saddle point (ΔXBEM, ΔYBEM) and the target displacements (ΔXobj, ΔYobj): (a) Xerr distribution of model 2; (b) Yerr distribution of model 2.

    图 6  鞍点模拟位移量(ΔXBEM, ΔYBEM)与目标移动量(ΔXobj, ΔYobj)间的误差情况 (a) 模型3的Xerr分布; (b) 模型3的Yerr分布

    Figure 6.  Error between the simulated displacements of the saddle point (ΔXBEM, ΔYBEM) and the target displacements (ΔXobj, ΔYobj): (a) Xerr distribution of model 3; (b) Yerr distribution of model 3.

    表 1  初步拟合1的拟合情况

    Table 1.  The fitting situation of the preliminary fit 1.

    EXRF0(X, Y)EXRF1(X, Y)EXRF2(X, Y)EYRF0(X, Y)EYRF1(X, Y)EYRF2(X, Y)
    X阶数122122
    Y阶数333133
    Adj R-sq0.99790.99770.99770.99920.99630.9963
    DownLoad: CSV

    表 2  拟合2的拟合情况

    Table 2.  The fitting situation of the fit 2.

    EXRF0(X, Y)EXRF1(X, Y)EXRF2(X, Y)EYRF0(X, Y)EYRF1(X, Y)EYRF2(X, Y)
    X阶数122122
    Y阶数444144
    Adj R-sq0.99960.99970.99970.99920.99940.9994
    DownLoad: CSV

    表 3  拟合3的拟合情况

    Table 3.  The fitting situation of the fit 3.

    EXRF0(X, Y)EXRF1(X, Y)EXRF2(X, Y)EYRF0(X, Y)EYRF1(X, Y)EYRF2(X, Y)
    X阶数555555
    Y阶数555555
    Adj R-sq1.00001.00001.00001.00000.99990.9999
    DownLoad: CSV
    Baidu
  • [1]

    Siverns J D, Quraishi Q 2017 Quantum Inf. Process. 16 314Google Scholar

    [2]

    Ding X Y, Yu Q, Lu X Q, Wang X H, Huo X M, Qian X 2023 Anal. Chem. 95 2348Google Scholar

    [3]

    Papanastasiou D, Kounadis D, Lekkas A, et al. 2022 J. Am. Soc. Mass Spectrom. 33 1990Google Scholar

    [4]

    Ozawa A, Davila-Rodriguez J, Bounds J R, Schuessler H A, Hänsch T W, Udem T 2017 Nat. Commun. 8 44Google Scholar

    [5]

    Amitrano V, Roggero A, Luchi P, Turro F, Vespucci L, Pederiva F 2023 Phys. Rev. D 107 023007Google Scholar

    [6]

    Monroe C, Campbell W C, Duan L M, et al. 2021 Rev. Mod. Phys. 93 025001Google Scholar

    [7]

    Niroula P, Shaydulin R, Yalovetzky R, Minssen P, Herman D, Hu S, Pistoia M 2022 Sci. Rep. 12 17171Google Scholar

    [8]

    Pogorelov I, Feldker T, Marciniak C D, et al. 2021 PRX Quantum 2 020343Google Scholar

    [9]

    Wang P P, Luan C Y, Qiao M, Um M, Zhang J H, Wang Y, Yuan X, Gu M L, Zhang J N, Kim K 2021 Nat. Commun. 12 233Google Scholar

    [10]

    Manovitz T, Shapira Y, Gazit L, Akerman N, Ozeri R 2022 PRX Quantum 3 010347Google Scholar

    [11]

    Mehta K K, Bruzewicz C D, McConnell R, Ram R J, Sage J M, Chiaverini J 2016 Nature Nanotech. 11 1066Google Scholar

    [12]

    Ballance C J, Harty T P, Linke N M, Sepiol M A, Lucas D M 2016 Phys. Rev. Lett. 117 060504Google Scholar

    [13]

    Rudolph M S, Toussaint N B, Katabarwa A, Johri S, Peropadre B, Perdomo-Ortiz A 2022 Phys. Rev. X 12 031010Google Scholar

    [14]

    范桁 2018 67 120301Google Scholar

    Fan H 2018 Acta Physica Sinica 67 120301Google Scholar

    [15]

    Murali P, Debroy D M, Brown K R, Martonosi M 2022 Commun. ACM 65 101Google Scholar

    [16]

    Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Moses S A, Allman M, Baldwin C, Foss-Feig M, Hayes D, Mayer K 2021 Nature 592 209Google Scholar

    [17]

    Ivory M, Setzer W J, Karl N, McGuinness H, DeRose C, Blain M, Stick D, Gehl M, Parazzoli L P 2021 Phys. Rev. X 11 041033Google Scholar

    [18]

    Malinowski M, Allcock D T C, Ballance C J 2023 PRX Quantum 4 040313Google Scholar

    [19]

    Romaszko Z D, Hong S, Siegele M, Puddy R K, Lebrun-Gallagher F R, Weidt S, Hensinger W K 2020 Nat. Rev. Phys. 2 285Google Scholar

    [20]

    Wang Y H, Li Y, Yin Z Q, Zeng B 2018 npj Quantum Inf. 4 46Google Scholar

    [21]

    Ryan-Anderson C, Bohnet J G, Lee K, et al. 2021 Phys. Rev. X 11 041058Google Scholar

    [22]

    Mehta K K, Zhang C, Malinowski M, Nguyen T L, Stadler M, Home J P 2020 Nature 586 533Google Scholar

    [23]

    Bao X Y, Cui J M, Fang D, Chen W B, Wang J, Huang Y F, Li C F, Guo G C 2023 JUSTC 53 0705Google Scholar

    [24]

    Van Rynbach A, Maunz P, Kim J 2016 Appl. Phys. Lett. 109 221108Google Scholar

    [25]

    Wang Z, Wang B R, Ma Q L, Guo J Y, Li M S, Wang Y, Rao X X, Huang Z Q, Luo L 2020 arXiv: 2004.08845 [quant-ph]

    [26]

    Holz P C, Auchter S, Stocker G, Valentini M, Lakhmanskiy K, Rössler C, Stampfer P, Sgouridis S, Aschauer E, Colombe Y, Blatt R 2020 Adv. Quantum Technol. 3 2000031Google Scholar

    [27]

    Liu Y R, Wang Z, Xiang Z X, Wang Q K, Hu T Y, Wang X 2024 Chip 3 100078Google Scholar

    [28]

    Hong S, Lee M, Cheon H, Kim T, Cho D I 2016 Sensors 16 616Google Scholar

    [29]

    Read F H, Bowring N J 2011 Nucl. Instr. and Meth. A 645 273Google Scholar

    [30]

    House M G 2008 Phys. Rev. A 78 033402Google Scholar

    [31]

    Lauprêtre T, Achi B, Groult L, Carry É, Kersalé Y, Delehaye M, Hafiz M A, Lacroûte C 2023 Appl. Phys. B 129 37Google Scholar

    [32]

    Zhang X, Ou B, Chen T, Xie Y, Wu W, Chen P 2020 Phys. Scr. 95 045103Google Scholar

    [33]

    Zhang C, Mehta K K, Home J P 2022 New J. Phys. 24 073030Google Scholar

    [34]

    王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿 2022 71 133701Google Scholar

    Wang C X, He R, Li R R, Chen Y, Fang D, Cui J M, Huang Y F, Li C F, Guo G C 2022 Acta Phys. Sin. 71 133701Google Scholar

    [35]

    Kumph M, Holz P, Langer K, Meraner M, Niedermayr M, Brownnutt M, Blatt R 2016 New J. Phys. 18 023047Google Scholar

    [36]

    Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53Google Scholar

    [37]

    Niedermayr M, Lakhmanskiy K, Kumph M, Partel S, Edlinger J, Brownnutt M, Blatt R 2014 New J. Phys. 16 113068Google Scholar

    [38]

    吴宇恺, 段路明 2023 72 230302Google Scholar

    Wu Y K, Duan L M 2023 Acta Phys. Sin. 72 230302Google Scholar

  • [1] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [3] Zhang Jing-Yan, Dou Peng-Wei, Zhao Yun-Chi, Zhang Shi-Lei, Liu Jia-Qiang, Qi Jie, Lü Hao-Chang, Liu Ruo-Yang, Yu Guang-Hua, Jiang Yong, Shen Bao-Gen, Wang Shou-Guo. Multi-field manipulation in Hall balance. Acta Physica Sinica, 2021, 70(4): 048501. doi: 10.7498/aps.70.20201799
    [4] Guan Fu-Xin, Dong Shao-Hua, He Qiong, Xiao Shi-Yi, Sun Shu-Lin, Zhou Lei. Scatterings and wavefront manipulations of surface plasmon polaritons. Acta Physica Sinica, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [5] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [6] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [7] Zhang Shu-He, Liang Zhen, Zhou Jin-Hua. Using quaternions to analyze the trapping force of an ellipsoidal bead. Acta Physica Sinica, 2017, 66(4): 048701. doi: 10.7498/aps.66.048701
    [8] Hu Yang, Wang Qiu-Liang, Li Yi, Zhu Xu-Chen, Niu Chao-Qun. Optimization of magnetic resonance imaging high-order axial shim coils using boundary element method. Acta Physica Sinica, 2016, 65(21): 218301. doi: 10.7498/aps.65.218301
    [9] Huang Fei-Hu, Peng Jian, You Ming-Yang. Analyses of characetristics of air passenger group mobility behaviors. Acta Physica Sinica, 2016, 65(22): 228901. doi: 10.7498/aps.65.228901
    [10] Jiao Yun-Long, Liu Xiao-Jun, Pang Ming-Hua, Liu Kun. Analyses of droplet spreading and the movement of wetting line on a solid surface. Acta Physica Sinica, 2016, 65(1): 016801. doi: 10.7498/aps.65.016801
    [11] Yin Ji-Fu, You Yun-Xiang, Li Wei, Hu Tian-Qun. Numerical analysis for the characteristics of flow control around a circular cylinder with a turbulent boundary layer separation using the electromagnetic force. Acta Physica Sinica, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [12] Zhang Jian, Chen Shu-Ming, Liu Wei. Substrate effect on surface-electrode ion trap and hybrid design for ion trap. Acta Physica Sinica, 2014, 63(6): 060303. doi: 10.7498/aps.63.060303
    [13] Yang Li-Xia, Ma Hui, Shi Wei-Dong, Shi Li-Juan, Yu Ping-Ping. Finite difference time domain analysis on electromagnetic scattering characteristic of plasma thin layer based on surface impedance boundary condition method. Acta Physica Sinica, 2013, 62(3): 034102. doi: 10.7498/aps.62.034102
    [14] Xu Zan-Xin, Wang Yue, Si Hong-Bo, Feng Zhen-Ming. Analysis of urban human mobility behavior based on random matrix theory. Acta Physica Sinica, 2011, 60(4): 040501. doi: 10.7498/aps.60.040501
    [15] Su Dong, Tang Chang-Jian, Liu Pu-Kun. Boundary effect analysis of electromagnetic mode in the beam-ion channel. Acta Physica Sinica, 2007, 56(5): 2802-2807. doi: 10.7498/aps.56.2802
    [16] You Tian-Xue, Yuan Bao-Shan, Li Fang-Zhu. Plasma boundary identification in HL-2A by means of the movable current filaments method. Acta Physica Sinica, 2007, 56(9): 5323-5329. doi: 10.7498/aps.56.5323
    [17] Miao Jiang-Ping, Wu Zong-Han, Sun Cheng-Xiu, Sun Yue-Ming. The self-consistent theoretical study of the effect of surface plasmon and polariton on electronic transport Ⅱ——The calculation and analysis of molecular orbital field in MIM system. Acta Physica Sinica, 2005, 54(5): 2282-2290. doi: 10.7498/aps.54.2282
    [18] LIU HONG-XIANG, WEI HE-LIN, LIU ZU-LI, LIU YAN-HONG, WANG JUN-ZHEN. EFFECT OF THE MAGNETIC MIRROR FIELD ON THE ION ENERGY DISTRIBUTIONS IN A RADIO F REQUENCY PLASMA. Acta Physica Sinica, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [19] GAO KE-LIN, YAN MIN, LUO XUE-LI, ZHU XI-WEN, HUANG GUI-LONG, LI JIAO-MEI, SHI LEI. . Acta Physica Sinica, 1995, 44(1): 43-49. doi: 10.7498/aps.44.43
    [20] ZHU YEI-ZHUNG, LEE TSE-CHING. ANGULAR DISTRIBUTION OF THE FISSION FRAGMENTS AND THE STRUCTURE AT THE SADDLE POINT. Acta Physica Sinica, 1964, 20(10): 1003-1018. doi: 10.7498/aps.20.1003
Metrics
  • Abstract views:  501
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2024
  • Accepted Date:  27 December 2024
  • Available Online:  02 January 2025
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map