Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analytic approximation for the soliton solution of the discrete modified KdV equation

Yang Pei Chen Yong Li Zhi-Bin

Citation:

Analytic approximation for the soliton solution of the discrete modified KdV equation

Yang Pei, Chen Yong, Li Zhi-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We extend the homotopy analysis method to solving the discrete modified KdV equation. The bright soliton solution expressed by a series of exponential functions is obtained, which agrees well with the exact solution. It indicates the validity and great potential of the homotopy analysis method in solving complicated nonlinear problems.
    [1]

    [1]Fermi E, Pasta J, Ulam S 1965 Collected Papers of Enrico Fermi(Ⅱ) (Chicago: University of Chicago Press) p1

    [2]

    [2]Suris Y B 1997 J. Phys. A 30 1745

    [3]

    [3]Suris Y B 1999 Rev. Math. Phys. 11 727

    [4]

    [4]Suris Y B 2003 The Problem of Integrable Discretization: Hamitonian Approach, Progress in Mathemetics ( Vol. 219) (Basel: Birkhuser-Verlag) p1

    [5]

    [5]Blaszak M, Marciniak K 1994 J. Math. Phys. 35 4661

    [6]

    [6]Belov A A, Chaltikian K D 1993 Phys. Lett. B 309 268

    [7]

    [7]Hu X B, Zhu Z N 1998 J. Phys. A 31 4755

    [8]

    [8]Hu X B, Zhu Z N 1998 J. Math. Phys. 39 4766

    [9]

    [9]Ma W X, Hu X B, Zhu S M, Wu Y T 1999 J. Math. Phys. 40 6071

    [10]

    ]Zhang D J 2005 Chaos Solitons Fract. 23 1333

    [11]

    ]Sun Y P, Chen D Y, Xu X X 2006 Phys. Lett. A 359 47

    [12]

    ]Zhu J, Geng X 2007 Phys. Lett. A 368 464

    [13]

    ]Hu X B, Wu Y T 1998 Phys. Lett. A 246 523

    [14]

    ]Chou K S, Qu C Z 2001 Phys. Lett. A 280 303

    [15]

    ]Luo L, Fan E G 2007 Chin. Phys. Lett. 24 1444

    [16]

    ]Zhang W, Huang Y Z, Xiao Y 1998 Phys. Rev. E 57 7358

    [17]

    ]Xiao Y, Hai W H 1994 J. Phys. A 27 6873

    [18]

    ]Chow K W 1994 Phys. Scr. 50 233

    [19]

    ]Shek E C M, Chow K W 2008 Chaos Solitons Fract. 36 296

    [20]

    ]Yang P, Chen Y, Li Z B 2009 Appl. Math. Comput. 210 362

    [21]

    ]Yang P, Chen Y, Li Z B 2008 Chin. Phys. B 17 3953

    [22]

    ]Taogetusang, Sirendaoerji 2009 Acta Phys. Sin. 58 5894 (in Chinese) [套格图桑、斯仁道尔吉 2009 58 5894]

    [23]

    ]Zhang S Q 2007 Acta Phys. Sin. 56 1870 (in Chinese) [张善卿 2007 56 1870]

    [24]

    ]Liao S J 2003 Beyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: Chapman & Hall/CRC Press) p1

    [25]

    ]Liao S J 2002 J. Fluid Mech. 453 411

    [26]

    ]Liao S J 2003 Int. J. Non-Lin. Mech. 38 1173

    [27]

    ]Liao S J 2003 J. Fluid Mech. 488 189

    [28]

    ]Liao S J 2003 Appl. Math. Comput. 144 495

    [29]

    ]Liao S J 2004 Int. J. Non-Lin. Mech. 39 271

    [30]

    ]Liao S J 2004 Appl. Math. Comput. 147 499

    [31]

    ]Wu Y Y, Wang C, Liao S J 2005 Chaos Solitons Fract. 23 1733

    [32]

    ]Wu W, Liao S J 2005 Chaos Solitons Fract. 26 177

    [33]

    ]Liao S J 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 983

    [34]

    ]Liao S J 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 2144

    [35]

    ]Liao S J, Tan Y 2007 Stud. Appl. Math. 119 297

    [36]

    ]Abbasbandy S, Parkes E J 2008 Chaos Solitons Fract. 36 581

    [37]

    ]Abbasbandy S 2009 Chaos Solitons Fract. 39 428

    [38]

    ]Liu Y P, Li Z B 2008 Z. Naturforsch. A 63 241

    [39]

    ]Liu Y P, Li Z B 2009 J. Phys. A 42 125205

    [40]

    ]Liu Y P, Li Z B 2009 Chaos Solitons Fract. 39 1

    [41]

    ]Yang H J, Shi Y R, Duan W S,Lü K P 2007 Acta Phys. Sin. 56 3064 (in Chinese) [杨红娟、石玉仁、段文山、吕克璞 2007 56 3064]

    [42]

    ]Shi Y R, Wang Y H, Yang H J, Duan W S 2007 Acta Phys. Sin. 56 6791 (in Chinese) [石玉仁、汪映海、杨红娟、段文山 2007 56 6791]

    [43]

    ]Shi Y R, Xu X J, Wu Z X, Wang Y H, Yang H J, Duan W S, Lü K P 2006 Acta Phys. Sin. 55 1555 (in Chinese) [石玉仁、许新建、吴枝喜、汪映海、杨红娟、段文山、吕克璞 2006 55 1555]

    [44]

    ]Xu W, Sun Z K, Yang X L 2005 Acta Phys. Sin. 54 5069 (in Chinese) [徐伟、孙中奎、杨晓丽 2005 54 5069]

    [45]

    ]Wang Z, Zou L, Zhang H Q 2008 Commun. Theor. Phys. 49 1373

    [46]

    ]Zou L, Zong Z, Wang Z, He L 2007 Phys. Lett. A 370 287

  • [1]

    [1]Fermi E, Pasta J, Ulam S 1965 Collected Papers of Enrico Fermi(Ⅱ) (Chicago: University of Chicago Press) p1

    [2]

    [2]Suris Y B 1997 J. Phys. A 30 1745

    [3]

    [3]Suris Y B 1999 Rev. Math. Phys. 11 727

    [4]

    [4]Suris Y B 2003 The Problem of Integrable Discretization: Hamitonian Approach, Progress in Mathemetics ( Vol. 219) (Basel: Birkhuser-Verlag) p1

    [5]

    [5]Blaszak M, Marciniak K 1994 J. Math. Phys. 35 4661

    [6]

    [6]Belov A A, Chaltikian K D 1993 Phys. Lett. B 309 268

    [7]

    [7]Hu X B, Zhu Z N 1998 J. Phys. A 31 4755

    [8]

    [8]Hu X B, Zhu Z N 1998 J. Math. Phys. 39 4766

    [9]

    [9]Ma W X, Hu X B, Zhu S M, Wu Y T 1999 J. Math. Phys. 40 6071

    [10]

    ]Zhang D J 2005 Chaos Solitons Fract. 23 1333

    [11]

    ]Sun Y P, Chen D Y, Xu X X 2006 Phys. Lett. A 359 47

    [12]

    ]Zhu J, Geng X 2007 Phys. Lett. A 368 464

    [13]

    ]Hu X B, Wu Y T 1998 Phys. Lett. A 246 523

    [14]

    ]Chou K S, Qu C Z 2001 Phys. Lett. A 280 303

    [15]

    ]Luo L, Fan E G 2007 Chin. Phys. Lett. 24 1444

    [16]

    ]Zhang W, Huang Y Z, Xiao Y 1998 Phys. Rev. E 57 7358

    [17]

    ]Xiao Y, Hai W H 1994 J. Phys. A 27 6873

    [18]

    ]Chow K W 1994 Phys. Scr. 50 233

    [19]

    ]Shek E C M, Chow K W 2008 Chaos Solitons Fract. 36 296

    [20]

    ]Yang P, Chen Y, Li Z B 2009 Appl. Math. Comput. 210 362

    [21]

    ]Yang P, Chen Y, Li Z B 2008 Chin. Phys. B 17 3953

    [22]

    ]Taogetusang, Sirendaoerji 2009 Acta Phys. Sin. 58 5894 (in Chinese) [套格图桑、斯仁道尔吉 2009 58 5894]

    [23]

    ]Zhang S Q 2007 Acta Phys. Sin. 56 1870 (in Chinese) [张善卿 2007 56 1870]

    [24]

    ]Liao S J 2003 Beyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: Chapman & Hall/CRC Press) p1

    [25]

    ]Liao S J 2002 J. Fluid Mech. 453 411

    [26]

    ]Liao S J 2003 Int. J. Non-Lin. Mech. 38 1173

    [27]

    ]Liao S J 2003 J. Fluid Mech. 488 189

    [28]

    ]Liao S J 2003 Appl. Math. Comput. 144 495

    [29]

    ]Liao S J 2004 Int. J. Non-Lin. Mech. 39 271

    [30]

    ]Liao S J 2004 Appl. Math. Comput. 147 499

    [31]

    ]Wu Y Y, Wang C, Liao S J 2005 Chaos Solitons Fract. 23 1733

    [32]

    ]Wu W, Liao S J 2005 Chaos Solitons Fract. 26 177

    [33]

    ]Liao S J 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 983

    [34]

    ]Liao S J 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 2144

    [35]

    ]Liao S J, Tan Y 2007 Stud. Appl. Math. 119 297

    [36]

    ]Abbasbandy S, Parkes E J 2008 Chaos Solitons Fract. 36 581

    [37]

    ]Abbasbandy S 2009 Chaos Solitons Fract. 39 428

    [38]

    ]Liu Y P, Li Z B 2008 Z. Naturforsch. A 63 241

    [39]

    ]Liu Y P, Li Z B 2009 J. Phys. A 42 125205

    [40]

    ]Liu Y P, Li Z B 2009 Chaos Solitons Fract. 39 1

    [41]

    ]Yang H J, Shi Y R, Duan W S,Lü K P 2007 Acta Phys. Sin. 56 3064 (in Chinese) [杨红娟、石玉仁、段文山、吕克璞 2007 56 3064]

    [42]

    ]Shi Y R, Wang Y H, Yang H J, Duan W S 2007 Acta Phys. Sin. 56 6791 (in Chinese) [石玉仁、汪映海、杨红娟、段文山 2007 56 6791]

    [43]

    ]Shi Y R, Xu X J, Wu Z X, Wang Y H, Yang H J, Duan W S, Lü K P 2006 Acta Phys. Sin. 55 1555 (in Chinese) [石玉仁、许新建、吴枝喜、汪映海、杨红娟、段文山、吕克璞 2006 55 1555]

    [44]

    ]Xu W, Sun Z K, Yang X L 2005 Acta Phys. Sin. 54 5069 (in Chinese) [徐伟、孙中奎、杨晓丽 2005 54 5069]

    [45]

    ]Wang Z, Zou L, Zhang H Q 2008 Commun. Theor. Phys. 49 1373

    [46]

    ]Zou L, Zong Z, Wang Z, He L 2007 Phys. Lett. A 370 287

  • [1] Li Yong-Qiang, Liu Ling, Zhang Chen-Hui, Duan Li, Kang Qi. Analytical approximations for capillary flow in interior corners of infinite long cylinder under microgravity. Acta Physica Sinica, 2013, 62(2): 024701. doi: 10.7498/aps.62.024701
    [2] Li Yong-Qiang, Zhang Chen-Hui, Liu Ling, Duan Li, Kang Qi. The analytical approximate solutions of capillary flow in circular tubes under microgravity. Acta Physica Sinica, 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [3] Han Xiang-Lin, Ouyang Cheng, Song Tao, Dai Sun-Sheng. The homotopy analysis method for a class of jamming transition problem in traffic flow. Acta Physica Sinica, 2013, 62(17): 170203. doi: 10.7498/aps.62.170203
    [4] Xu Yuan-Fen. Exact traveling wave solutions for simplified model of Gross-Pitaevskii equation in the 1D-Tonks-Girardeau gas. Acta Physica Sinica, 2013, 62(10): 100202. doi: 10.7498/aps.62.100202
    [5] Zhu Qian, Shang Xue-Li, Chen Wen-Zhen. Homotopy analysis solution of point reactor kinetics equations with six-group delayed neutrons. Acta Physica Sinica, 2012, 61(7): 070201. doi: 10.7498/aps.61.070201
    [6] Shi Yu-Ren, Yang Hong-Juan. Application of the homotopy analysis method to solving dissipative system. Acta Physica Sinica, 2010, 59(1): 67-74. doi: 10.7498/aps.59.67
    [7] Li Bang-Qing, Ma Yu-Lan. (G′/G)-expansion method and new exact solutions for (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov system. Acta Physica Sinica, 2009, 58(7): 4373-4378. doi: 10.7498/aps.58.4373
    [8] Taogetusang, Sirendaoerji. Constructing new exact solutions to nonlinear difference-differential equations by Riccati equation. Acta Physica Sinica, 2009, 58(9): 5894-5902. doi: 10.7498/aps.58.5894
    [9] Taogetusang, Sirendaoerji. The new exact solutions of Volterra difference-differential equation and KdV difference-differential equation. Acta Physica Sinica, 2009, 58(9): 5887-5893. doi: 10.7498/aps.58.5887
    [10] Gao Bin, Liu Shi-Da, Liu Shi-Kuo. Envelope periodic and solitary solutions of Davey-Stewartson equation. Acta Physica Sinica, 2009, 58(4): 2155-2158. doi: 10.7498/aps.58.2155
    [11] Wu Qin-Kuan. The homotopy analysis method for solving a class of combustion models. Acta Physica Sinica, 2008, 57(5): 2654-2657. doi: 10.7498/aps.57.2654
    [12] Zhang Shan-Qing. The exact solutions of a modified Volterra lattice. Acta Physica Sinica, 2007, 56(4): 1870-1874. doi: 10.7498/aps.56.1870
    [13] Solving solitary wave solutions of higher dimensional nonlinear evolution equations with the homotopy analysis method. Acta Physica Sinica, 2007, 56(12): 6791-6796. doi: 10.7498/aps.56.6791
    [14] Yang Hong-Juan, Shi Yu-Ren, Duan Wen-Shan, Lü Ke-Pu. Solving solitary wave solutions of nonlinear evolution equations with the homotopy analysis method. Acta Physica Sinica, 2007, 56(6): 3064-3069. doi: 10.7498/aps.56.3064
    [15] Shi Yu-Ren, Xu Xin-Jian, Wu Zhi-Xi, Wang Ying-Hai, Yang Hong-Juan, Duan Wen-Shan, Lü Ke-Pu. Application of the homotopy analysis method to solving nonlinear evolution equations. Acta Physica Sinica, 2006, 55(4): 1555-1560. doi: 10.7498/aps.55.1555
    [16] Yu Ya-Xuan, Wang Qi, Zhao Xue-Qin, Zhi Hong-Yan, Zhang Hong-Qing. A direct algebraic method to obtain solitary solutions of nonlinear differential-difference equations. Acta Physica Sinica, 2005, 54(9): 3992-3994. doi: 10.7498/aps.54.3992
    [17] Taogetusang, Sirendaoreji. New exact solitary wave solutions to the BBM and mBBM equations. Acta Physica Sinica, 2004, 53(12): 4052-4060. doi: 10.7498/aps.53.4052
    [18] Huang Ding-Jiang, Zhang Hong-Qing. Extended hyperbolic function method and new exact solitary wave solutions of Zakharov equations. Acta Physica Sinica, 2004, 53(8): 2434-2438. doi: 10.7498/aps.53.2434
    [19] Zhang Shan-Qing, Li Zhi-Bin. A new application of Jacobi elliptic function expansion method. Acta Physica Sinica, 2003, 52(5): 1066-1070. doi: 10.7498/aps.52.1066
    [20] Shi Yu-ren, Lü Ke-Pu, Duan Wen-Shan, Hong Xue-Ren, Zhao Jin-Bao, Yang Hong-Juan. Explicit and exact solutions of the combined KdV equation. Acta Physica Sinica, 2003, 52(2): 267-270. doi: 10.7498/aps.52.267
Metrics
  • Abstract views:  9319
  • PDF Downloads:  958
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2009
  • Accepted Date:  03 December 2009
  • Published Online:  05 March 2010

/

返回文章
返回
Baidu
map