搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多射频场驱动下鞍点移动的建模方法

麦均 王钊 袁畅 肖杰 马伟 王旭

引用本文:
Citation:

多射频场驱动下鞍点移动的建模方法

麦均, 王钊, 袁畅, 肖杰, 马伟, 王旭
cstr: 32037.14.aps.74.20241552

A method of modeling saddle point movement driven by multiple radio frequency fields

MAI Jun, WANG Zhao, YUAN Chang, XIAO Jie, MA Wei, WANG Xu
cstr: 32037.14.aps.74.20241552
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在集成光学模块的一体化离子阱中, 极易出现光学焦点与囚禁离子鞍点错位的问题, 严重阻碍了该实验方法的实用性. 为解决该问题, 可利用多射频场方法对离子鞍点位置进行补偿和移动. 然而, 在实际实验过程中, 多射频方法的应用, 需要知道鞍点实际空间位置对应的应加载射频电压幅值. 这就需要建立一套数学模型, 对二者关系进行描述. 模型的精确程度决定了鞍点空间位置的控制精度、模型的简易程度决定了求解过程的速度. 因此, 本文提出一种基于数值仿真电场分布结果和多项式拟合方法而建立的多射频电场电压和鞍点位置关系的数学模型, 可以在无需考虑物理机制和模型基础上, 快速、准确地给出二者之间的数学描述. 本文利用数值方法对该模型的正确性和适用范围进行了验证和讨论, 可以在实验中快速准确地给出应加载射频电压幅值, 使鞍点移动并与光学焦点重合, 该方法极大地降低了由于求解引起的时间延迟、提高了鞍点位置移动过程中反馈环路带宽.
    In an integrated ion trap with integrated optical modules, the problem of misalignment between the optical focus and the trapped ion saddle point is very likely to occur, which seriously hinders the practicality of the experimental method. To solve this problem, the multi-RF field method can be used to compensate for and move the ion saddle point position. However, in the actual experimental process, the application of the multi-RF method requires the knowledge of the amplitude of the RF voltage to be loaded corresponding to the actual spatial position of the saddle point. Therefore, a set of mathematical models is established to describe the relationship. The accuracy of the model determines the control accuracy of the spatial position of the saddle point, and the simplicity of the model determines the speed of the solution process. Therefore, in this work, a mathematical model of the relationship between the multi-RF electric field voltage and the saddle point position is proposed based on the numerically simulated electric field distribution and the polynomial fitting method. It can quickly and accurately give a mathematical description between the two without considering the physical mechanism or model. Numerical method is adopted to verify and discuss the correctness and scope of application of the model, and can quickly and accurately provide the amplitude of the RF voltage to be loaded in the experiment, causing the saddle point to move and coincide with the optical focus. This method greatly reduces the time delay caused by the solution and improves the feedback loop bandwidth during the movement of the saddle point position.
      通信作者: 王钊, joeshardow@gmail.com ; 王旭, xuwang@gzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12474422, 11904423)、贵州省高层次创新型人才百层次遴选培养(批准号: GCC[2023]090)和广东省基础与应用基础研究基金(批准号: 2020A1515010864)资助的课题.
      Corresponding author: WANG Zhao, joeshardow@gmail.com ; WANG Xu, xuwang@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12474422, 11904423), the 100-level Selection and Training of High-level Innovative Talents of Guizhou Province, China (Grant No. GCC[2023]090), and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2020A1515010864).
    [1]

    Siverns J D, Quraishi Q 2017 Quantum Inf. Process. 16 314Google Scholar

    [2]

    Ding X Y, Yu Q, Lu X Q, Wang X H, Huo X M, Qian X 2023 Anal. Chem. 95 2348Google Scholar

    [3]

    Papanastasiou D, Kounadis D, Lekkas A, et al. 2022 J. Am. Soc. Mass Spectrom. 33 1990Google Scholar

    [4]

    Ozawa A, Davila-Rodriguez J, Bounds J R, Schuessler H A, Hänsch T W, Udem T 2017 Nat. Commun. 8 44Google Scholar

    [5]

    Amitrano V, Roggero A, Luchi P, Turro F, Vespucci L, Pederiva F 2023 Phys. Rev. D 107 023007Google Scholar

    [6]

    Monroe C, Campbell W C, Duan L M, et al. 2021 Rev. Mod. Phys. 93 025001Google Scholar

    [7]

    Niroula P, Shaydulin R, Yalovetzky R, Minssen P, Herman D, Hu S, Pistoia M 2022 Sci. Rep. 12 17171Google Scholar

    [8]

    Pogorelov I, Feldker T, Marciniak C D, et al. 2021 PRX Quantum 2 020343Google Scholar

    [9]

    Wang P P, Luan C Y, Qiao M, Um M, Zhang J H, Wang Y, Yuan X, Gu M L, Zhang J N, Kim K 2021 Nat. Commun. 12 233Google Scholar

    [10]

    Manovitz T, Shapira Y, Gazit L, Akerman N, Ozeri R 2022 PRX Quantum 3 010347Google Scholar

    [11]

    Mehta K K, Bruzewicz C D, McConnell R, Ram R J, Sage J M, Chiaverini J 2016 Nature Nanotech. 11 1066Google Scholar

    [12]

    Ballance C J, Harty T P, Linke N M, Sepiol M A, Lucas D M 2016 Phys. Rev. Lett. 117 060504Google Scholar

    [13]

    Rudolph M S, Toussaint N B, Katabarwa A, Johri S, Peropadre B, Perdomo-Ortiz A 2022 Phys. Rev. X 12 031010Google Scholar

    [14]

    范桁 2018 67 120301Google Scholar

    Fan H 2018 Acta Physica Sinica 67 120301Google Scholar

    [15]

    Murali P, Debroy D M, Brown K R, Martonosi M 2022 Commun. ACM 65 101Google Scholar

    [16]

    Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Moses S A, Allman M, Baldwin C, Foss-Feig M, Hayes D, Mayer K 2021 Nature 592 209Google Scholar

    [17]

    Ivory M, Setzer W J, Karl N, McGuinness H, DeRose C, Blain M, Stick D, Gehl M, Parazzoli L P 2021 Phys. Rev. X 11 041033Google Scholar

    [18]

    Malinowski M, Allcock D T C, Ballance C J 2023 PRX Quantum 4 040313Google Scholar

    [19]

    Romaszko Z D, Hong S, Siegele M, Puddy R K, Lebrun-Gallagher F R, Weidt S, Hensinger W K 2020 Nat. Rev. Phys. 2 285Google Scholar

    [20]

    Wang Y H, Li Y, Yin Z Q, Zeng B 2018 npj Quantum Inf. 4 46Google Scholar

    [21]

    Ryan-Anderson C, Bohnet J G, Lee K, et al. 2021 Phys. Rev. X 11 041058Google Scholar

    [22]

    Mehta K K, Zhang C, Malinowski M, Nguyen T L, Stadler M, Home J P 2020 Nature 586 533Google Scholar

    [23]

    Bao X Y, Cui J M, Fang D, Chen W B, Wang J, Huang Y F, Li C F, Guo G C 2023 JUSTC 53 0705Google Scholar

    [24]

    Van Rynbach A, Maunz P, Kim J 2016 Appl. Phys. Lett. 109 221108Google Scholar

    [25]

    Wang Z, Wang B R, Ma Q L, Guo J Y, Li M S, Wang Y, Rao X X, Huang Z Q, Luo L 2020 arXiv: 2004.08845 [quant-ph]

    [26]

    Holz P C, Auchter S, Stocker G, Valentini M, Lakhmanskiy K, Rössler C, Stampfer P, Sgouridis S, Aschauer E, Colombe Y, Blatt R 2020 Adv. Quantum Technol. 3 2000031Google Scholar

    [27]

    Liu Y R, Wang Z, Xiang Z X, Wang Q K, Hu T Y, Wang X 2024 Chip 3 100078Google Scholar

    [28]

    Hong S, Lee M, Cheon H, Kim T, Cho D I 2016 Sensors 16 616Google Scholar

    [29]

    Read F H, Bowring N J 2011 Nucl. Instr. and Meth. A 645 273Google Scholar

    [30]

    House M G 2008 Phys. Rev. A 78 033402Google Scholar

    [31]

    Lauprêtre T, Achi B, Groult L, Carry É, Kersalé Y, Delehaye M, Hafiz M A, Lacroûte C 2023 Appl. Phys. B 129 37Google Scholar

    [32]

    Zhang X, Ou B, Chen T, Xie Y, Wu W, Chen P 2020 Phys. Scr. 95 045103Google Scholar

    [33]

    Zhang C, Mehta K K, Home J P 2022 New J. Phys. 24 073030Google Scholar

    [34]

    王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿 2022 71 133701Google Scholar

    Wang C X, He R, Li R R, Chen Y, Fang D, Cui J M, Huang Y F, Li C F, Guo G C 2022 Acta Phys. Sin. 71 133701Google Scholar

    [35]

    Kumph M, Holz P, Langer K, Meraner M, Niedermayr M, Brownnutt M, Blatt R 2016 New J. Phys. 18 023047Google Scholar

    [36]

    Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53Google Scholar

    [37]

    Niedermayr M, Lakhmanskiy K, Kumph M, Partel S, Edlinger J, Brownnutt M, Blatt R 2014 New J. Phys. 16 113068Google Scholar

    [38]

    吴宇恺, 段路明 2023 72 230302Google Scholar

    Wu Y K, Duan L M 2023 Acta Phys. Sin. 72 230302Google Scholar

  • 图 1  建立多射频场驱动鞍点移动的基本电极结构 (a) 射频电极经分段处理的表面离子阱结构; (b) 调节多射频电压幅值驱动鞍点径向移动

    Fig. 1.  Establishing the basic electrode structure for multi-RF field driven saddle point movement: (a) Surface ion trap structure after radio frequency electrode segmentation treatment; (b) adjusting the amplitude of multiple RF voltages to drive the radial movement of the saddle point.

    图 2  赝势分布情况 (a) 研究对象Z = 0处初始赝势分布; (b) 径向面内赝势梯度变化最小方向上的赝势分布

    Fig. 2.  Pseudopotential distribution: (a) Initial pseudopotential distribution on the radial plane Z = 0; (b) pseudopotential distribution in the direction with the smallest pseudopotential gradient change in the radial plane.

    图 3  射频电极组各电极RFi (i = 0—2)依次施加单位电压时, Z = 0处电场分布情况 (a) RF0作用下X方向的电场分布EXRF0; (b) RF1作用下X方向的电场分布EXRF1; (c) RF2作用下X方向的电场分布EXRF2; (d) RF0作用下Y方向的电场分布EYRF0; (e) RF1作用下Y方向的电场分布EYRF1; (f) RF2作用下Y方向的电场分布EYRF2

    Fig. 3.  When unit voltage is applied to each electrode RFi (i = 0—2) of the RF electrode group in turn, the electric field distribution at Z = 0: (a) Electric field distribution EXRF0 in the X direction under the action of electrode RF0; (b) electric field distribution EXRF1 in the X direction under the action of electrode RF1; (c) electric field distribution EXRF2 in the X direction under the action of electrode RF2; (d) electric field distribution in the Y direction under the action of electrode RF0; (e) electric field distribution in the Y direction under the action of electrode RF1; (f) electric field distribution in the Y direction under the action of electrode RF2.

    图 4  鞍点模拟移动量ΔXBEM, ΔYBEM与目标移动量ΔXobj, ΔYobj间的误差情况 (a) 模型1的Xerr分布; (b) 模型1的Yerr分布

    Fig. 4.  Error between the simulated displacements of the saddle point (ΔXBEM, ΔYBEM) and the target displacements (ΔXobj, ΔYobj): (a) Xerr distribution of model 1; (b) Yerr distribution of model 1.

    图 5  鞍点模拟位移量(ΔXBEM, ΔYBEM)与目标移动量(ΔXobj, ΔYobj)间的误差情况 (a) 模型2的Xerr分布; (b) 模型2的Yerr分布

    Fig. 5.  Error between the simulated displacements of the saddle point (ΔXBEM, ΔYBEM) and the target displacements (ΔXobj, ΔYobj): (a) Xerr distribution of model 2; (b) Yerr distribution of model 2.

    图 6  鞍点模拟位移量(ΔXBEM, ΔYBEM)与目标移动量(ΔXobj, ΔYobj)间的误差情况 (a) 模型3的Xerr分布; (b) 模型3的Yerr分布

    Fig. 6.  Error between the simulated displacements of the saddle point (ΔXBEM, ΔYBEM) and the target displacements (ΔXobj, ΔYobj): (a) Xerr distribution of model 3; (b) Yerr distribution of model 3.

    表 1  初步拟合1的拟合情况

    Table 1.  The fitting situation of the preliminary fit 1.

    EXRF0(X, Y)EXRF1(X, Y)EXRF2(X, Y)EYRF0(X, Y)EYRF1(X, Y)EYRF2(X, Y)
    X阶数122122
    Y阶数333133
    Adj R-sq0.99790.99770.99770.99920.99630.9963
    下载: 导出CSV

    表 2  拟合2的拟合情况

    Table 2.  The fitting situation of the fit 2.

    EXRF0(X, Y)EXRF1(X, Y)EXRF2(X, Y)EYRF0(X, Y)EYRF1(X, Y)EYRF2(X, Y)
    X阶数122122
    Y阶数444144
    Adj R-sq0.99960.99970.99970.99920.99940.9994
    下载: 导出CSV

    表 3  拟合3的拟合情况

    Table 3.  The fitting situation of the fit 3.

    EXRF0(X, Y)EXRF1(X, Y)EXRF2(X, Y)EYRF0(X, Y)EYRF1(X, Y)EYRF2(X, Y)
    X阶数555555
    Y阶数555555
    Adj R-sq1.00001.00001.00001.00000.99990.9999
    下载: 导出CSV
    Baidu
  • [1]

    Siverns J D, Quraishi Q 2017 Quantum Inf. Process. 16 314Google Scholar

    [2]

    Ding X Y, Yu Q, Lu X Q, Wang X H, Huo X M, Qian X 2023 Anal. Chem. 95 2348Google Scholar

    [3]

    Papanastasiou D, Kounadis D, Lekkas A, et al. 2022 J. Am. Soc. Mass Spectrom. 33 1990Google Scholar

    [4]

    Ozawa A, Davila-Rodriguez J, Bounds J R, Schuessler H A, Hänsch T W, Udem T 2017 Nat. Commun. 8 44Google Scholar

    [5]

    Amitrano V, Roggero A, Luchi P, Turro F, Vespucci L, Pederiva F 2023 Phys. Rev. D 107 023007Google Scholar

    [6]

    Monroe C, Campbell W C, Duan L M, et al. 2021 Rev. Mod. Phys. 93 025001Google Scholar

    [7]

    Niroula P, Shaydulin R, Yalovetzky R, Minssen P, Herman D, Hu S, Pistoia M 2022 Sci. Rep. 12 17171Google Scholar

    [8]

    Pogorelov I, Feldker T, Marciniak C D, et al. 2021 PRX Quantum 2 020343Google Scholar

    [9]

    Wang P P, Luan C Y, Qiao M, Um M, Zhang J H, Wang Y, Yuan X, Gu M L, Zhang J N, Kim K 2021 Nat. Commun. 12 233Google Scholar

    [10]

    Manovitz T, Shapira Y, Gazit L, Akerman N, Ozeri R 2022 PRX Quantum 3 010347Google Scholar

    [11]

    Mehta K K, Bruzewicz C D, McConnell R, Ram R J, Sage J M, Chiaverini J 2016 Nature Nanotech. 11 1066Google Scholar

    [12]

    Ballance C J, Harty T P, Linke N M, Sepiol M A, Lucas D M 2016 Phys. Rev. Lett. 117 060504Google Scholar

    [13]

    Rudolph M S, Toussaint N B, Katabarwa A, Johri S, Peropadre B, Perdomo-Ortiz A 2022 Phys. Rev. X 12 031010Google Scholar

    [14]

    范桁 2018 67 120301Google Scholar

    Fan H 2018 Acta Physica Sinica 67 120301Google Scholar

    [15]

    Murali P, Debroy D M, Brown K R, Martonosi M 2022 Commun. ACM 65 101Google Scholar

    [16]

    Pino J M, Dreiling J M, Figgatt C, Gaebler J P, Moses S A, Allman M, Baldwin C, Foss-Feig M, Hayes D, Mayer K 2021 Nature 592 209Google Scholar

    [17]

    Ivory M, Setzer W J, Karl N, McGuinness H, DeRose C, Blain M, Stick D, Gehl M, Parazzoli L P 2021 Phys. Rev. X 11 041033Google Scholar

    [18]

    Malinowski M, Allcock D T C, Ballance C J 2023 PRX Quantum 4 040313Google Scholar

    [19]

    Romaszko Z D, Hong S, Siegele M, Puddy R K, Lebrun-Gallagher F R, Weidt S, Hensinger W K 2020 Nat. Rev. Phys. 2 285Google Scholar

    [20]

    Wang Y H, Li Y, Yin Z Q, Zeng B 2018 npj Quantum Inf. 4 46Google Scholar

    [21]

    Ryan-Anderson C, Bohnet J G, Lee K, et al. 2021 Phys. Rev. X 11 041058Google Scholar

    [22]

    Mehta K K, Zhang C, Malinowski M, Nguyen T L, Stadler M, Home J P 2020 Nature 586 533Google Scholar

    [23]

    Bao X Y, Cui J M, Fang D, Chen W B, Wang J, Huang Y F, Li C F, Guo G C 2023 JUSTC 53 0705Google Scholar

    [24]

    Van Rynbach A, Maunz P, Kim J 2016 Appl. Phys. Lett. 109 221108Google Scholar

    [25]

    Wang Z, Wang B R, Ma Q L, Guo J Y, Li M S, Wang Y, Rao X X, Huang Z Q, Luo L 2020 arXiv: 2004.08845 [quant-ph]

    [26]

    Holz P C, Auchter S, Stocker G, Valentini M, Lakhmanskiy K, Rössler C, Stampfer P, Sgouridis S, Aschauer E, Colombe Y, Blatt R 2020 Adv. Quantum Technol. 3 2000031Google Scholar

    [27]

    Liu Y R, Wang Z, Xiang Z X, Wang Q K, Hu T Y, Wang X 2024 Chip 3 100078Google Scholar

    [28]

    Hong S, Lee M, Cheon H, Kim T, Cho D I 2016 Sensors 16 616Google Scholar

    [29]

    Read F H, Bowring N J 2011 Nucl. Instr. and Meth. A 645 273Google Scholar

    [30]

    House M G 2008 Phys. Rev. A 78 033402Google Scholar

    [31]

    Lauprêtre T, Achi B, Groult L, Carry É, Kersalé Y, Delehaye M, Hafiz M A, Lacroûte C 2023 Appl. Phys. B 129 37Google Scholar

    [32]

    Zhang X, Ou B, Chen T, Xie Y, Wu W, Chen P 2020 Phys. Scr. 95 045103Google Scholar

    [33]

    Zhang C, Mehta K K, Home J P 2022 New J. Phys. 24 073030Google Scholar

    [34]

    王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿 2022 71 133701Google Scholar

    Wang C X, He R, Li R R, Chen Y, Fang D, Cui J M, Huang Y F, Li C F, Guo G C 2022 Acta Phys. Sin. 71 133701Google Scholar

    [35]

    Kumph M, Holz P, Langer K, Meraner M, Niedermayr M, Brownnutt M, Blatt R 2016 New J. Phys. 18 023047Google Scholar

    [36]

    Dehmelt H G 1968 Adv. At. Mol. Phys. 3 53Google Scholar

    [37]

    Niedermayr M, Lakhmanskiy K, Kumph M, Partel S, Edlinger J, Brownnutt M, Blatt R 2014 New J. Phys. 16 113068Google Scholar

    [38]

    吴宇恺, 段路明 2023 72 230302Google Scholar

    Wu Y K, Duan L M 2023 Acta Phys. Sin. 72 230302Google Scholar

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面.  , 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门.  , 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [3] 张静言, 窦鹏伟, 赵云驰, 张石磊, 刘佳强, 祁杰, 吕浩昌, 刘若洋, 于广华, 姜勇, 沈保根, 王守国. 霍尔天平材料的多场调控.  , 2021, 70(4): 048501. doi: 10.7498/aps.70.20201799
    [4] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控.  , 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [5] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应.  , 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [6] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析.  , 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [7] 张书赫, 梁振, 周金华. 运用四元数分析椭球微粒所受的光阱力.  , 2017, 66(4): 048701. doi: 10.7498/aps.66.048701
    [8] 胡洋, 王秋良, 李毅, 朱旭晨, 牛超群. 基于边界元方法的超导核磁共振成像设备高阶轴向匀场线圈优化算法.  , 2016, 65(21): 218301. doi: 10.7498/aps.65.218301
    [9] 黄飞虎, 彭舰, 由明阳. 航空旅客群体移动行为特性分析.  , 2016, 65(22): 228901. doi: 10.7498/aps.65.228901
    [10] 焦云龙, 刘小君, 逄明华, 刘焜. 固体表面液滴铺展与润湿接触线的移动分析.  , 2016, 65(1): 016801. doi: 10.7498/aps.65.016801
    [11] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析.  , 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [12] 张见, 陈书明, 刘威. 表面离子阱的衬底效应模型研究及新型离子阱设计.  , 2014, 63(6): 060303. doi: 10.7498/aps.63.060303
    [13] 杨利霞, 马辉, 施卫东, 施丽娟, 于萍萍. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析.  , 2013, 62(3): 034102. doi: 10.7498/aps.62.034102
    [14] 徐赞新, 王钺, 司洪波, 冯振明. 基于随机矩阵理论的城市人群移动行为分析.  , 2011, 60(4): 040501. doi: 10.7498/aps.60.040501
    [15] 苏 东, 唐昌建, 刘濮鲲. 束-离子通道电磁模式的边界效应分析.  , 2007, 56(5): 2802-2807. doi: 10.7498/aps.56.2802
    [16] 游天雪, 袁保山, 李芳著. 用可移动电流丝方法重建HL-2A等离子体边界的研究.  , 2007, 56(9): 5323-5329. doi: 10.7498/aps.56.5323
    [17] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究Ⅱ——MIM体系分子轨道场的计算与分析.  , 2005, 54(5): 2282-2290. doi: 10.7498/aps.54.2282
    [18] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响.  , 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [19] 高克林, 颜旻, 罗学立, 朱熙文, 黄贵龙, 李交美, 施磊. 射频阱中异荷离子云耦合运动的实验分析.  , 1995, 44(1): 43-49. doi: 10.7498/aps.44.43
    [20] 卓益忠, 李泽清. 裂变碎块角分布与鞍点结构.  , 1964, 20(10): 1003-1018. doi: 10.7498/aps.20.1003
计量
  • 文章访问数:  502
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04
  • 修回日期:  2024-12-27
  • 上网日期:  2025-01-02
  • 刊出日期:  2025-02-20

/

返回文章
返回
Baidu
map