搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

标量声波方程前向散射场的保相位理论及其线性化近似

冯波 徐文君 蔡杰雄 吴如山 王华忠

引用本文:
Citation:

标量声波方程前向散射场的保相位理论及其线性化近似

冯波, 徐文君, 蔡杰雄, 吴如山, 王华忠

Phase-preserving theory and its linearization approximation for forward scattering field of scalar acoustic wave equation

Feng Bo, Xu Wen-Jun, Cai Jie-Xiong, Wu Ru-Shan, Wang Hua-Zhong
PDF
HTML
导出引用
  • 传统的波动方程线性化近似理论, 如一阶Born近似或Rytov近似等, 均隐含“弱散射”假设, 因此仅适用于弱扰动模型. 为克服“弱散射”假设的制约并将波动方程线性化近似理论推广至强扰动模型中, 提出了适用于预测前向散射波相位扰动的保相位理论. 通过将标量声波方程Rytov变换得到的非线性Ricatti方程中关于未知解(即散射场复相位)的积分, 在Wentzel-Kramers-Brillouin-Jeffreys (WKBJ)近似下转化为对散射角和模型扰动的积分, 给出了前向散射场相位扰动的显式积分表达. 理论推导表明: 对于一维波传播问题, 保相位理论可以精确预测任意速度扰动模型中前向散射波的相位扰动. 对于小角度前向散射, 保相位理论可以进行线性化近似, 得到广义Rytov近似. 数值实验表明, 对于高维问题, 相比于一阶Rytov近似, 广义Rytov近似可以更好地预测前向小角度散射场的相位扰动, 且适用于强速度扰动模型. 广义Rytov近似拓展了Rytov近似的成立条件和适用范围, 可以直接应用于地震层析成像及医学超声透射成像中, 从而降低层析反问题对初始模型的依赖性并加速反演收敛.
    The conventional wave-equation linearization methods, such as the first-order Born or Rytov approximation, always implicitly imply a weak-scattering assumption, making it valid only for weak perturbation models. To extend the wave-equation linearization theory to strong perturbation models, we consider a scenario that the reference model is smooth within the scale of the incident wave length, and propose a phase-preserving method which can predict the phase perturbation of forward scattering wave field. First, we introduce the WKBJ approximation to the scattered- and incident wave fields so that the integral of the unknown solution (i.e. the scattered field) in the nonlinear Ricatti integral equation can be replaced by the integral of scattering-angle and model perturbation, yielding an explicit expression of the scattered field. Theoretical derivation shows that the proposed phase-preserving method can accurately predict the phase-perturbation of forward scattered wave field regardless of the strength of velocity perturbations for one-dimensional wave propagation problem. To apply the phase-preserving approximation to the inverse problem, we further consider a scenario of small-angle forward propagation. In this case, the phase-preserving approximation can be linearized by neglecting the influence of scattering angles, leading to a linear relation between the scattered field and the model perturbation, which we refer to as the generalized Rytov approximation. Numerical experiments demonstrate that the generalized Rytov approximation can predict the phase perturbation of the scattered field with higher accuracy for small-angle forward propagation, and is suitable for strong model perturbations. The generalized Rytov approximation extends the validity and the scope of application of the traditional Rytov approximation. In specific application fields such as the seismic traveltime tomography or medical ultrasonic transmission imaging, a new traveltime/phase sensitivity kernel can be derived by replacing the conventional Rytov approximation with the proposed method, which can increase the inversion accuracy and speed up the convergence.
      通信作者: 冯波, ancd111@163.com
    • 基金项目: 国家自然科学基金(批准号: 42074143)和中央高校基本科研业务费专项资金资助的课题.
      Corresponding author: Feng Bo, ancd111@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 42074143) and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Aki K 1973 J. Geophys. Res. 78 1334Google Scholar

    [2]

    Born M 1926 Z. Phys. 38 803Google Scholar

    [3]

    Newton R G 1961 R. Oehme, Phys. Rev 70 121

    [4]

    Newton R G 1989 Inverse Schrödinger Scattering in Three Dimensions (New York: Springer-Verlag) pp25, 26

    [5]

    Päivärinta L, Erkki S 1991 SIAM J. Math. Anal. 22 480Google Scholar

    [6]

    Wu R S, Zheng Y 2014 Geophys. J. Int. 196 1827Google Scholar

    [7]

    Wu R S, Wang B, Hu C 2015 Inverse Probl. 31 115004Google Scholar

    [8]

    王本锋, 吴如山, 陈小宏, 陆文凯 2016 地球 59 2257Google Scholar

    Wang B F, Wu R S, Chen X H, Lu W K 2016 Chin. J. Geophys. 59 2257Google Scholar

    [9]

    Rytov S M 1937 Izv. Akad. Nauk. SSSR Ser Fiz 2 223 (in Russia)

    [10]

    Chernov L A, Silverman R A, Morse P M 1960 Phys. Today 13 50Google Scholar

    [11]

    Tartarski V L 1971 Jerusalem: Israel Program for Scientific Translations (London: Oldbourne Press) pp218–220

    [12]

    Ishimaru A 1978 Wave Propagation and Scattering in Random Media (Vol. II) (New York: Academic Press) pp376–378

    [13]

    Devaney A J 1984 IEEE T. Geosci. Remote 22 3Google Scholar

    [14]

    Wu R S, Toksöz M N 1987 Geophysics 52 11Google Scholar

    [15]

    Tsihrintzis G A, Devaney A J 2000 IEEE T. Image Process. 9 1560Google Scholar

    [16]

    Wu R S, Flatté S M 1990 Pure Appl. Geophys. 132 175Google Scholar

    [17]

    Montelli R, Nolet G, Dahlen F A, Masters G, Engdahl E R, Hung S H 2004 Science 303 338Google Scholar

    [18]

    Zhou Y, Nolet G, Dahlen F A, Laske G 2006 Geophys. Res. 111 B04304Google Scholar

    [19]

    刘玉柱, 董良国, 李培明, 王毓炜, 朱金平, 马在田 2009 地球 52 2310Google Scholar

    Liu Y Z, Dong L G, Li P M, Wang Y W, Zhu J P, Ma Z T 2009 Chin. J. Geophys. 52 2310Google Scholar

    [20]

    Xu W, Xie X B, Geng J 2015 Pure Appl. Geophys. 172 1409Google Scholar

    [21]

    冯波, 罗飞, 王华忠 2019 地球 62 2217Google Scholar

    Feng B, Luo F, Wang H Z 2019 Chin. J. Geophys. 62 2217Google Scholar

    [22]

    Wu R S 2003 Pure Appl. Geophys. 160 509Google Scholar

    [23]

    Tsihrintzis G A, Devaney A J 2000 IEEE T. Inform. Theory 46 1748Google Scholar

    [24]

    Manning R M 1996 Radiophys. Quant. El. 39 287Google Scholar

    [25]

    Kim B C, Tinin M V 2009 Waves Random Complex 19 284Google Scholar

    [26]

    汪燚林, 董良国 2021 地球 64 3701Google Scholar

    Wang Y L, Dong L G 2021 Chin. J. Geophys. 64 3701Google Scholar

    [27]

    Clayton R W, Stolt R H 1981 Geophysics 46 1559Google Scholar

    [28]

    Flatté S M 1979 Sound Transmission Through a Fluctuating Ocean (London: Cambridge University Press) p165

    [29]

    Snieder R, Lomax A 1996 Geophys. J. Int. 125 796Google Scholar

    [30]

    郭敦仁 1991 数学物理方法(第二版) (北京: 高等教育出版社) 第361页

    Guo D R 1991 Methods of Mathematical Physics (2nd Ed.) (Beijing: Higher Education Press ) p361

    [31]

    钟万勰, 高强 2005 计算力学学报 22 1

    Zhong W X, Gao Q 2005 Chin. J. Comput. Mech. 22 1

  • 图 1  前向散射角的定义

    Fig. 1.  Definition of the forward-scattering angle.

    图 2  二维层状模型中平面波入射与出射示意图(红色和蓝色实线分别表示入射和透射射线)

    Fig. 2.  Sketch of planewave incidence and emergence in a two-layered model (the red and blue lines stand for the incident and emergent rays, respectively).

    图 3  双层速度模型中地震记录的(振幅归一化)波形对比. (a)—(d)分别代表速度扰动百分比为5%, 20%, 50%和100%. 黑色和灰色曲线分别为真实模型及背景模型(第1层速度)中正演的地震记录, 红色和蓝色曲线分别为一阶Rytov近似和广义Rytov近似得到的地震记录, 绿色虚线为保相位近似解(保留散射角)

    Fig. 3.  Seismic waveforms calculated using the two-layered model. Panel (a)–(d) stand for velocity models with the velocity percentages of 5%, 20%, 50% and 100%, respectively. The black- and gray-curve are the waveforms in true and background model, respectively; the red- and blue-curve are the first-order and the GRA results, respectively, the green-dotted curve is the phase-preserving solution (keeping the scattering-angle).

    Baidu
  • [1]

    Aki K 1973 J. Geophys. Res. 78 1334Google Scholar

    [2]

    Born M 1926 Z. Phys. 38 803Google Scholar

    [3]

    Newton R G 1961 R. Oehme, Phys. Rev 70 121

    [4]

    Newton R G 1989 Inverse Schrödinger Scattering in Three Dimensions (New York: Springer-Verlag) pp25, 26

    [5]

    Päivärinta L, Erkki S 1991 SIAM J. Math. Anal. 22 480Google Scholar

    [6]

    Wu R S, Zheng Y 2014 Geophys. J. Int. 196 1827Google Scholar

    [7]

    Wu R S, Wang B, Hu C 2015 Inverse Probl. 31 115004Google Scholar

    [8]

    王本锋, 吴如山, 陈小宏, 陆文凯 2016 地球 59 2257Google Scholar

    Wang B F, Wu R S, Chen X H, Lu W K 2016 Chin. J. Geophys. 59 2257Google Scholar

    [9]

    Rytov S M 1937 Izv. Akad. Nauk. SSSR Ser Fiz 2 223 (in Russia)

    [10]

    Chernov L A, Silverman R A, Morse P M 1960 Phys. Today 13 50Google Scholar

    [11]

    Tartarski V L 1971 Jerusalem: Israel Program for Scientific Translations (London: Oldbourne Press) pp218–220

    [12]

    Ishimaru A 1978 Wave Propagation and Scattering in Random Media (Vol. II) (New York: Academic Press) pp376–378

    [13]

    Devaney A J 1984 IEEE T. Geosci. Remote 22 3Google Scholar

    [14]

    Wu R S, Toksöz M N 1987 Geophysics 52 11Google Scholar

    [15]

    Tsihrintzis G A, Devaney A J 2000 IEEE T. Image Process. 9 1560Google Scholar

    [16]

    Wu R S, Flatté S M 1990 Pure Appl. Geophys. 132 175Google Scholar

    [17]

    Montelli R, Nolet G, Dahlen F A, Masters G, Engdahl E R, Hung S H 2004 Science 303 338Google Scholar

    [18]

    Zhou Y, Nolet G, Dahlen F A, Laske G 2006 Geophys. Res. 111 B04304Google Scholar

    [19]

    刘玉柱, 董良国, 李培明, 王毓炜, 朱金平, 马在田 2009 地球 52 2310Google Scholar

    Liu Y Z, Dong L G, Li P M, Wang Y W, Zhu J P, Ma Z T 2009 Chin. J. Geophys. 52 2310Google Scholar

    [20]

    Xu W, Xie X B, Geng J 2015 Pure Appl. Geophys. 172 1409Google Scholar

    [21]

    冯波, 罗飞, 王华忠 2019 地球 62 2217Google Scholar

    Feng B, Luo F, Wang H Z 2019 Chin. J. Geophys. 62 2217Google Scholar

    [22]

    Wu R S 2003 Pure Appl. Geophys. 160 509Google Scholar

    [23]

    Tsihrintzis G A, Devaney A J 2000 IEEE T. Inform. Theory 46 1748Google Scholar

    [24]

    Manning R M 1996 Radiophys. Quant. El. 39 287Google Scholar

    [25]

    Kim B C, Tinin M V 2009 Waves Random Complex 19 284Google Scholar

    [26]

    汪燚林, 董良国 2021 地球 64 3701Google Scholar

    Wang Y L, Dong L G 2021 Chin. J. Geophys. 64 3701Google Scholar

    [27]

    Clayton R W, Stolt R H 1981 Geophysics 46 1559Google Scholar

    [28]

    Flatté S M 1979 Sound Transmission Through a Fluctuating Ocean (London: Cambridge University Press) p165

    [29]

    Snieder R, Lomax A 1996 Geophys. J. Int. 125 796Google Scholar

    [30]

    郭敦仁 1991 数学物理方法(第二版) (北京: 高等教育出版社) 第361页

    Guo D R 1991 Methods of Mathematical Physics (2nd Ed.) (Beijing: Higher Education Press ) p361

    [31]

    钟万勰, 高强 2005 计算力学学报 22 1

    Zhong W X, Gao Q 2005 Chin. J. Comput. Mech. 22 1

  • [1] 杨玉莲, 刘黎明, 邓庆雪, 贾新鸿, 梁文燕, 姜利, 宋伟杰, 牟欣扬. 非线性效应对前向受激布里渊散射分布式传感的影响.  , 2022, 71(15): 154206. doi: 10.7498/aps.71.20220313
    [2] 雷波, 何兆阳, 张瑞. 基于迁移学习的水下目标定位方法仿真研究.  , 2021, 70(22): 224302. doi: 10.7498/aps.70.20210277
    [3] 洪宝剑, 卢殿臣. 一类广义扰动KdV-Burgers方程的同伦近似解.  , 2013, 62(17): 170202. doi: 10.7498/aps.62.170202
    [4] 李吉娜, 朱晓宁, 程利芳. 扰动扩散方程初值问题的近似对称约化.  , 2013, 62(2): 020201. doi: 10.7498/aps.62.020201
    [5] 杜增吉, 莫嘉琪. 一类扰动发展方程近似解.  , 2012, 61(15): 155202. doi: 10.7498/aps.61.155202
    [6] 吉飞宇, 张顺利. 带有扰动非线性源的多孔介质方程的近似泛函分离变量.  , 2012, 61(8): 080202. doi: 10.7498/aps.61.080202
    [7] 刘厚通, 陈良富, 苏林. Fernald前向积分用于机载激光雷达气溶胶后向散射系数反演的理论研究.  , 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [8] 焦小玉. 远场模型方程的同伦近似对称约化.  , 2011, 60(12): 120201. doi: 10.7498/aps.60.120201
    [9] 莫嘉琪. 扰动Vakhnenko方程物理模型的行波解.  , 2011, 60(9): 090203. doi: 10.7498/aps.60.090203
    [10] 莫嘉琪, 陈贤峰. 一类非线性扰动Nizhnik-Novikov-Veselov系统的孤立波近似解析解.  , 2010, 59(5): 2919-2923. doi: 10.7498/aps.59.2919
    [11] 莫嘉琪, 陈贤峰. 一类广义非线性扰动色散方程孤立波的近似解.  , 2010, 59(3): 1403-1408. doi: 10.7498/aps.59.1403
    [12] 石兰芳, 莫嘉琪. 一类扰动非线性发展方程的类孤子同伦近似解析解.  , 2009, 58(12): 8123-8126. doi: 10.7498/aps.58.8123
    [13] 莫嘉琪, 陈丽华. 一类Landau-Ginzburg-Higgs扰动方程孤子的近似解.  , 2008, 57(8): 4646-4648. doi: 10.7498/aps.57.4646
    [14] 柯微娜, 程 茜, 钱梦騄. 测量单泡声致发光中气泡R(t)曲线的前向Mie散射技术.  , 2008, 57(6): 3629-3635. doi: 10.7498/aps.57.3629
    [15] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解.  , 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [16] 徐 涵, 常文蔚, 卓红斌. 短脉冲激光尾流场中的前向Raman散射.  , 2003, 52(1): 135-139. doi: 10.7498/aps.52.135
    [17] 闫振亚, 张鸿庆. 具有阻尼项的非线性波动方程的相似约化.  , 2000, 49(11): 2113-2117. doi: 10.7498/aps.49.2113
    [18] 徐至展, 唐永红, 钱爱娣. 激光等离子体受激布里渊散射光谱的周期性结构——前向散射的间接证据.  , 1988, 37(4): 557-565. doi: 10.7498/aps.37.557
    [19] 丁鄂江, 黄祖洽. Boltzmann方程的奇异扰动解法(Ⅳ)——向非Maxwell分子的推广.  , 1985, 34(2): 225-234. doi: 10.7498/aps.34.225
    [20] 张富根. 圆偏振氟化氪激光在氢气中的前向受激喇曼散射.  , 1983, 32(9): 1211-1214. doi: 10.7498/aps.32.1211
计量
  • 文章访问数:  3067
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-03-31
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回
Baidu
map