Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of machine learning in cosmic ray particle identification

Liu Ye Niu He-Ran Li Bing-Bing Ma Xin-Hua Cui Shu-Wang

Citation:

Application of machine learning in cosmic ray particle identification

Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Machine learning algorithms can learn the rules and patterns of big data through computers, excavate potential information hidden behind the data, and be widely used to solve classification, regression, clustering, and other problems. Firstly, this paper uses CORSIKA software to simulate the process of cosmic ray cascade shower in the atmosphere, generating information such as the initial energy, zenith angle, azimuth angle of cosmic ray particles. Then, this paper uses the Geant4 toolkit to conduct thermal neutron detector response simulation, generating 4000 particles in each of proton, helium, CNO, MgAlSi and iron. Based on the experimental simulation data of thermal neutron detector, this paper constructs machine learning models for identifying cosmic ray particles by using decision tree (DT), random forest (RF) and BP neural network (BP NN) respectively. For each particle, all the machine learning algorithms are used for model training based on the simulation data. The cross grid search method is used to adjust the hyper parameters of each machine learning algorithm. The AUC value and Q quality factor value of each algorithm are used as evaluation indexes for particle composition identification. The AUC value is a general indicator for evaluating algorithm performance in machine learning and the Q quality factor value is an evaluation index commonly used in the field of high energy physics. The Experimental results show that different machine learning models have great influence on particle prediction accuracy, and the random forest cosmic ray particle identification model has sufficient accuracy and generalization capability. In the test, the decision tree algorithm adjusted by cross grid search method is sensitive to the medium components (CNO and MgAlSi). The AUC values of the algorithm are all above 0.95 and the Q quality factor values are all above 6. The random forest algorithm adjusted by the cross grid search method has the best effect on the identification of cosmic ray particles. The AUC values of the algorithm are all more than 0.92 and the Q quality factor values are all more than 4. The BP neural network algorithm is only sensitive to proton and iron. This study provides a new method and selection for identifying and screening the cosmic ray particles and it also provides a new idea for the following measurement of cosmic ray energy spectrum by thermal neutron detector.
      Corresponding author: Cui Shu-Wang, cuisw@hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905043, U2031103), the Department of Education Project Hebei Province, China (Grant No. KCJSZ2022036), and the Hebei University of Economics and Business Graduate Innovation Funding Project, China (Grant No. XYCX202333).
    [1]

    胡红波, 王祥玉, 刘四明 2018 科学通报 63 2440Google Scholar

    Hu H B, Wang X Y, Liu S M 2018 Chin. Sci. Bull. 63 2440Google Scholar

    [2]

    胡红波, 郭义庆 2016 科学通报 61 1188Google Scholar

    Hu H B, Guo Y Q 2016 Chin. Sci. Bull. 61 1188Google Scholar

    [3]

    曹臻 2022 科学通报 67 1558Google Scholar

    Cao Z 2022 Chin. Sci. Bull. 67 1558Google Scholar

    [4]

    曹臻, 陈明君, 陈松战, 胡红波, 刘成, 刘烨, 马玲玲, 马欣华, 盛祥东, 吴含荣, 肖刚, 姚志国, 尹丽巧, 查敏, 张寿山 2019 天文学报 60 3Google Scholar

    Cao Z, Chen M J, Chen S Z, Hu H B, Liu C, Liu Y, Ma L L, Ma X H, Shen X D, Wu H R, Xiao G, Yao Z G, Yin L Q, Zha M, Zhang S S 2019 Acta Astron. Sin. 60 3Google Scholar

    [5]

    李川, 王文博, 陈鹏飞 2022 中国科学: 物理学 力学 天文学 52 16Google Scholar

    Li C, Wang W B, Chen P F 2022 Sci. China Phys. Mech. 52 16Google Scholar

    [6]

    张丰, 刘虎, 祝凤荣 2022 71 249601Google Scholar

    Zhang F, Liu H, Zhu F R 2022 Acta Phys. Sin. 71 249601Google Scholar

    [7]

    陈秀林 2020 硕士学位论文 (北京: 中国科学院大学)

    Chen X L 2020 M. S. Thesis (Beijing University of Chinese Academy of Sciences) (in Chinese)

    [8]

    严雨婷, 毕文杰 2023 中国管理科学 网络首发 [2023-02-03]

    Yan Y T, Bi W J 2023 Chin. J. Manag. Sci. Online First (in Chinese)

    [9]

    Herrera L J, Todero Peixoto C J, Baños O, Carceller J M, Carrillo F, Guillén A 2020 Entropy 22 998Google Scholar

    [10]

    Pang L G, Zhou K, Su N, Petersen H, Stöcker H, Wang X N 2018 Nat. Commun. 9 210Google Scholar

    [11]

    高泽鹏, 王永佳, 李庆峰, 刘玲 2022 中国科学: 物理学 力学 天文学 52 252010Google Scholar

    Gao Z P, Wang Y J, Li Q F, Liu L 2022 Sci. China Phys. Mech. 52 252010Google Scholar

    [12]

    骆仕杰, 韩抒真 2023 小型微型计算机系统 网络首发 [2023-03-05]

    Luo S J, Han S Z 2023 J. Chin. Comp. Syst. Online First (in Chinese)

    [13]

    王玉东, 王忠海, 周荣, 陈秀莲, 覃雪, 刘军 2019 核电子学与探测技术 39 567

    Wang Y D, Wang Z H, Zhou R, Chen X L, Qin X, Liu J 2019 Nucl. Electron. Detect. Technol. 39 567

    [14]

    黎威, 龙连春, 刘静毅, 杨洋 2022 71 060202Google Scholar

    Li W, Long L C, Liu J Y, Yang Y 2022 Acta Phys. Sin. 71 060202Google Scholar

    [15]

    崔静静, 胡泽文, 任萍 2022 情报科学 40 90Google Scholar

    Cui J J, Hu Z W, Ren P 2022 Inf. Sci. 40 90Google Scholar

    [16]

    李勇男 2018 情报科学 36 80Google Scholar

    Li Y N 2018 Inf. Sci. 36 80Google Scholar

    [17]

    Lin S, Luo W 2019 Multivar. Behav. Res. 54 578Google Scholar

    [18]

    Song S, Park C G 2019 Sustainability 11 6976Google Scholar

    [19]

    肖燚, 郭亚会, 李明蔚, 付永硕, 孙峰 2022 北京师范大学学报(自然科学版) 58 261Google Scholar

    Xiao Y, Guo Y H, Li M W, Guo Y S, Sun F 2022 J. Beijing Normal Univ. (Nat. Sci.) 58 261Google Scholar

    [20]

    卢小宾, 张杨燚, 杨冠灿, 行佳鑫 2022 情报学报 41 1059Google Scholar

    Lu X B, Zhang Y Y, Yang G C, Xing J X 2022 Inf. Sci. 41 1059Google Scholar

    [21]

    Pei Y L, Li D D, Xue W X 2020 Concurr. Comp-Pract E 32 e5515

    [22]

    院琳, 杨雪松, 王秉中 2019 68 170503Google Scholar

    Yuan L, Yang X S, Wang B Z 2019 Acta Phys. Sin. 68 170503Google Scholar

    [23]

    赵振宇, 刘宇帆, 刘善存, 马海波 2023 北京航空航天大学学报 (社会科学版) 网络首发 [2023-03-05]

    Zhao Z Y, Liu Y F, Liu S C, Ma H B 2023 J. Beijing Univ. Aeronaut. Astronaut (Soc. Sci. Ed.) Online First

  • 图 1  宇宙线成分鉴别模型技术路线图

    Figure 1.  Technical roadmap of the cosmic rays component identification model.

    图 2  随机森林算法建模流程图

    Figure 2.  Flow chart of random forest algorithm modeling.

    图 3  本文BP神经网络结构示意图

    Figure 3.  Structure diagram of BP neural network in this paper

    图 4  三种宇宙线鉴别模型鉴别氦十折交叉验证核验图

    Figure 4.  Results of three cosmic rays identification models identifying helium using 10-fold cross validation method.

    图 5  三种宇宙线粒子鉴别模型鉴别氦核概率分布图

    Figure 5.  Probability distribution of three cosmic rays identification models identifying helium.

    表 1  决策树鉴别不同成分最佳超参数

    Table 1.  Optimal hyperparameters of decision tree identifying different components.

    超参数目标成分
    质子氦核碳氮氧镁铝硅铁核
    criterionEntropyEntropyEntropyEntropyEntropy
    max_depth2129402819
    min_samples_split24724
    min_weight_fraction_leaf00000
    min_samples_leaf11111
    DownLoad: CSV

    表 2  随机森林鉴别不同成分最佳超参数

    Table 2.  Optimal hyperparameters of random forest identifying different components.

    超参数目标成分
    质子氦核碳氮氧镁铝硅铁核
    criterionGiniGiniEntropyEntropyEntropy
    n_estimators4888301521
    max_depth2026302723
    min_samples_split22212
    min_samples_leaf11111
    DownLoad: CSV

    表 3  BP神经网络(鉴别氦核)隐藏层节点核验结果

    Table 3.  BP neural network (identifying helium) hidden layer nodes verification results.

    训练结果 隐藏节点个数
    5678910111213
    迭代次数200002000020000250002700020000200002000020000
    算法AUC值0.55030.50450.52930.55930.63290.62760.61770.61420.6418
    Q品质因子0.820.290.580.861.261.251.221.261.34
    DownLoad: CSV

    表 4  BP神经网络鉴别不同成分最佳超参数组合

    Table 4.  Optimal hyperparameters of BP neural network identifying different components.

    超参数目标成分
    质子氦核碳氮氧镁铝硅铁核
    隐藏层节点数1311131311
    初始学习率0.010.010.010.010.01
    迭代次数2000025000200002000020000
    DownLoad: CSV

    表 5  三种宇宙线粒子鉴别模型鉴别不同成分效率及纯度

    Table 5.  Efficiency and purity of three cosmic rays identification models identifying different components.

    目标成分效率/%纯度/%
    BP神经网络决策树随机森林BP神经网络决策树随机森林
    质子64.974.875.774.477.691.1
    氦核36.083.379.352.880.195.7
    碳氮氧10.393.481.564.594.899.4
    镁铝硅16.991.878.769.992.195.8
    铁核82.888.191.187.588.793.5
    DownLoad: CSV

    表 6  三种宇宙线粒子鉴别模型鉴别不同成分AUC值及Q品质因子

    Table 6.  AUC and Q quality factor values of three cosmic rays identification models identifying different components.

    目标成分AUCQ 品质因子
    BP神经网络决策树随机森林BP神经网络决策树随机森林
    质子0.79620.85550.92472.713.155.42
    氦核0.64180.88050.95371.343.758.38
    碳氮氧0.54440.96120.97390.877.5520.1
    镁铝硅0.57540.95040.95311.256.548.39
    铁核0.87510.89520.93802.962.974.40
    DownLoad: CSV
    Baidu
  • [1]

    胡红波, 王祥玉, 刘四明 2018 科学通报 63 2440Google Scholar

    Hu H B, Wang X Y, Liu S M 2018 Chin. Sci. Bull. 63 2440Google Scholar

    [2]

    胡红波, 郭义庆 2016 科学通报 61 1188Google Scholar

    Hu H B, Guo Y Q 2016 Chin. Sci. Bull. 61 1188Google Scholar

    [3]

    曹臻 2022 科学通报 67 1558Google Scholar

    Cao Z 2022 Chin. Sci. Bull. 67 1558Google Scholar

    [4]

    曹臻, 陈明君, 陈松战, 胡红波, 刘成, 刘烨, 马玲玲, 马欣华, 盛祥东, 吴含荣, 肖刚, 姚志国, 尹丽巧, 查敏, 张寿山 2019 天文学报 60 3Google Scholar

    Cao Z, Chen M J, Chen S Z, Hu H B, Liu C, Liu Y, Ma L L, Ma X H, Shen X D, Wu H R, Xiao G, Yao Z G, Yin L Q, Zha M, Zhang S S 2019 Acta Astron. Sin. 60 3Google Scholar

    [5]

    李川, 王文博, 陈鹏飞 2022 中国科学: 物理学 力学 天文学 52 16Google Scholar

    Li C, Wang W B, Chen P F 2022 Sci. China Phys. Mech. 52 16Google Scholar

    [6]

    张丰, 刘虎, 祝凤荣 2022 71 249601Google Scholar

    Zhang F, Liu H, Zhu F R 2022 Acta Phys. Sin. 71 249601Google Scholar

    [7]

    陈秀林 2020 硕士学位论文 (北京: 中国科学院大学)

    Chen X L 2020 M. S. Thesis (Beijing University of Chinese Academy of Sciences) (in Chinese)

    [8]

    严雨婷, 毕文杰 2023 中国管理科学 网络首发 [2023-02-03]

    Yan Y T, Bi W J 2023 Chin. J. Manag. Sci. Online First (in Chinese)

    [9]

    Herrera L J, Todero Peixoto C J, Baños O, Carceller J M, Carrillo F, Guillén A 2020 Entropy 22 998Google Scholar

    [10]

    Pang L G, Zhou K, Su N, Petersen H, Stöcker H, Wang X N 2018 Nat. Commun. 9 210Google Scholar

    [11]

    高泽鹏, 王永佳, 李庆峰, 刘玲 2022 中国科学: 物理学 力学 天文学 52 252010Google Scholar

    Gao Z P, Wang Y J, Li Q F, Liu L 2022 Sci. China Phys. Mech. 52 252010Google Scholar

    [12]

    骆仕杰, 韩抒真 2023 小型微型计算机系统 网络首发 [2023-03-05]

    Luo S J, Han S Z 2023 J. Chin. Comp. Syst. Online First (in Chinese)

    [13]

    王玉东, 王忠海, 周荣, 陈秀莲, 覃雪, 刘军 2019 核电子学与探测技术 39 567

    Wang Y D, Wang Z H, Zhou R, Chen X L, Qin X, Liu J 2019 Nucl. Electron. Detect. Technol. 39 567

    [14]

    黎威, 龙连春, 刘静毅, 杨洋 2022 71 060202Google Scholar

    Li W, Long L C, Liu J Y, Yang Y 2022 Acta Phys. Sin. 71 060202Google Scholar

    [15]

    崔静静, 胡泽文, 任萍 2022 情报科学 40 90Google Scholar

    Cui J J, Hu Z W, Ren P 2022 Inf. Sci. 40 90Google Scholar

    [16]

    李勇男 2018 情报科学 36 80Google Scholar

    Li Y N 2018 Inf. Sci. 36 80Google Scholar

    [17]

    Lin S, Luo W 2019 Multivar. Behav. Res. 54 578Google Scholar

    [18]

    Song S, Park C G 2019 Sustainability 11 6976Google Scholar

    [19]

    肖燚, 郭亚会, 李明蔚, 付永硕, 孙峰 2022 北京师范大学学报(自然科学版) 58 261Google Scholar

    Xiao Y, Guo Y H, Li M W, Guo Y S, Sun F 2022 J. Beijing Normal Univ. (Nat. Sci.) 58 261Google Scholar

    [20]

    卢小宾, 张杨燚, 杨冠灿, 行佳鑫 2022 情报学报 41 1059Google Scholar

    Lu X B, Zhang Y Y, Yang G C, Xing J X 2022 Inf. Sci. 41 1059Google Scholar

    [21]

    Pei Y L, Li D D, Xue W X 2020 Concurr. Comp-Pract E 32 e5515

    [22]

    院琳, 杨雪松, 王秉中 2019 68 170503Google Scholar

    Yuan L, Yang X S, Wang B Z 2019 Acta Phys. Sin. 68 170503Google Scholar

    [23]

    赵振宇, 刘宇帆, 刘善存, 马海波 2023 北京航空航天大学学报 (社会科学版) 网络首发 [2023-03-05]

    Zhao Z Y, Liu Y F, Liu S C, Ma H B 2023 J. Beijing Univ. Aeronaut. Astronaut (Soc. Sci. Ed.) Online First

  • [1] GUO Yan, LYU Heng, DING Chunling, YUAN Chenzhi, JIN Ruibo. Machine learning identification of fractional-order vortex beam diffraction process. Acta Physica Sinica, 2025, 74(1): 014203. doi: 10.7498/aps.74.20241458
    [2] ZHANG Tong, WANG Jiahao, TIAN Shuai, SUN Xuran, LI Ri. Machine learning-based study of dynamic shrinkage behavior during solidification of castings. Acta Physica Sinica, 2025, 74(2): 028103. doi: 10.7498/aps.74.20241581
    [3] WANG Peng, MAIMAITINIYAZI Maimaitiabudula. Quantum Dynamics of Machine Learning. Acta Physica Sinica, 2025, 74(6): . doi: 10.7498/aps.74.20240999
    [4] WANG DeXin, ZHANG Rui, YU DeKang, NA Hui, YAO ZhangHao, WU LingHe, ZHANG SuYaLaTu, LIANG TaiRan, HUANG MeiRong, WANG ZhiLong, BAI Yu, HUANG YongShun, YANG Xue, ZHANG JiaWen, LIU MengDi, MA Qiang, YU Jing, JI XiuYan, YU YiLiQi, SHAO XuePeng. Observation and Research on Cosmic Ray Muons and Solar Modulation Effect Based on Plastic Scintillator Detector. Acta Physica Sinica, 2025, 74(5): 1-8. doi: 10.7498/aps.74.20241704
    [5] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-Qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of magnetic Janus materials based on machine learning and first-principles calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [6] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [7] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [8] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [9] Mou Jia-Lian, Lü Jun-Guang, Sun Xi-Lei, Lan Xiao-Fei, Huang Yong-Sheng. Time of flight detector for charged particle identification based on circular electron-positron collider. Acta Physica Sinica, 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [10] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [11] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [12] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [13] Zhang Feng, Liu Hu, Zhu Feng-Rong. Properties of secondary components in extensive air shower of cosmic rays in knee energy region. Acta Physica Sinica, 2022, 71(24): 249601. doi: 10.7498/aps.71.20221556
    [14] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [15] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [16] Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han. Simulation study of scaler mode at large high altitude air shower observatory. Acta Physica Sinica, 2021, 70(19): 199301. doi: 10.7498/aps.70.20210632
    [17] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [18] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [19] Zhou Xun-Xiu, Wang Xin-Jian, Huang Dai-Hui, Jia Huan-Yu, Wu Chao-Yong. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China). Acta Physica Sinica, 2015, 64(14): 149202. doi: 10.7498/aps.64.149202
    [20] Wang Jun-Fang, Qie Xiu-Shu, Lu Hong, Zhang Ji-Long, Yu Xiao-Xia, Shi Feng. Effect of thunderstorm electric field on intensity of cosmic ray muons. Acta Physica Sinica, 2012, 61(15): 159202. doi: 10.7498/aps.61.159202
Metrics
  • Abstract views:  4433
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2023
  • Accepted Date:  08 April 2023
  • Available Online:  18 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回
Baidu
map