搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于塑料闪烁体探测器的宇宙线缪子与太阳调制效应观测研究

王德鑫 张蕊 尉德康 那蕙 姚张浩 吴凌赫 张苏雅拉吐 梁泰然 黄美容 王志龙 白宇 黄永顺 杨雪 张嘉文 刘梦迪 马蔷 于静 纪秀艳 于伊丽琦 邵学鹏

引用本文:
Citation:

基于塑料闪烁体探测器的宇宙线缪子与太阳调制效应观测研究

王德鑫, 张蕊, 尉德康, 那蕙, 姚张浩, 吴凌赫, 张苏雅拉吐, 梁泰然, 黄美容, 王志龙, 白宇, 黄永顺, 杨雪, 张嘉文, 刘梦迪, 马蔷, 于静, 纪秀艳, 于伊丽琦, 邵学鹏

Observation and Research on Cosmic Ray Muons and Solar Modulation Effect Based on Plastic Scintillator Detector

WANG DeXin, ZHANG Rui, YU DeKang, NA Hui, YAO ZhangHao, WU LingHe, ZHANG SuYaLaTu, LIANG TaiRan, HUANG MeiRong, WANG ZhiLong, BAI Yu, HUANG YongShun, YANG Xue, ZHANG JiaWen, LIU MengDi, MA Qiang, YU Jing, JI XiuYan, YU YiLiQi, SHAO XuePeng
PDF
HTML
导出引用
  • 本文利用塑料闪烁体探测器进行了宇宙线缪子计数谱及各向异性特性的观测实验. 实验采用双端符合测量和标准γ源进行能量刻度, 显著减小了探测器的噪声干扰, 提高了测量数据的可靠性. 通过引入温度与气压修正函数, 对计数结果进行了气象效应校正. 实验结果显示, 缪子在塑料闪烁体探测器中的能量损失呈现出随时间和太阳活动变化的周期性特征, 反映出太阳对宇宙线各向异性的调制效应. 此外, 实验数据与羊八井观测站中子-缪子望远镜的观测结果在缪子计数的日周期变化趋势上表现出较高的一致性. 本研究为深入探索宇宙线缪子的能量分布及太阳调制效应提供了可靠的实验依据, 同时为宇宙线探测技术的应用与发展提供了重要参考.
    Cosmic rays, originating from celestial phenomena such as stars, supernovae, and other astrophysical sources, are composed of high-energy particles that enter Earth’s atmosphere. Upon interaction with atmospheric nuclei, these primary cosmic rays generate an array of secondary particles, with muons constituting the dominant component at ground level. Muons, due to their relative abundance, stability, and well-characterized energy loss mechanisms, serve as critical probes for investigating the fundamental properties of cosmic rays. Studies of muon energy distribution, diurnal anisotropy, and their modulation by solar activity provide essential insights into the mechanisms of particle acceleration in cosmic ray sources and the influence of solar and atmospheric effects.This study aims to characterize the counting spectrum and anisotropic properties of cosmic ray muons using a plastic scintillator detector system. The experiment was conducted over a three-month period, from December 2023 to February 2024, leveraging long-bar plastic scintillator detectors equipped with dual-end photomultiplier tubes (PMTs) and a high-resolution digital data acquisition system. A dual-end coincidence measurement technique was implemented to enhance the signal-to-noise ratio by suppressing thermal noise and other background interferences. Comprehensive calibration of the detection system was performed using standard gamma-ray sources, including 137Cs, 60Co, and 40K, ensuring precise energy scaling and reliable performance.The observed energy spectrum of cosmic ray muons showed excellent agreement with theoretical predictions, accounting for the energy losses incurred as muons traverse the detector. Diurnal variations in muon count rates revealed a pronounced pattern, with a systematic reduction observed between 8:00 AM and 1:00 PM. This phenomenon is attributed to solar shielding effects, wherein enhanced solar activity during daytime hours modulates the flux of galactic cosmic rays reaching Earth’s surface. To account for atmospheric influences, meteorological corrections were applied using temperature and pressure adjustment functions derived from regression analysis. These corrections revealed that atmospheric pressure and temperature are significant factors influencing muon count rates, with clear linear relationships observed.The study further corroborated these findings through cross-comparisons with data from the Yangbajing Cosmic Ray Observatory. Minor discrepancies, primarily in low-energy muon count rates, were attributed to variations in detector sensitivities and local atmospheric conditions. These observations underscore the robustness of the plastic scintillator detector system for capturing detailed muon spectra and anisotropic patterns.In conclusion, this research establishes a reliable experimental framework for analyzing cosmic ray muons and their modulation by solar and atmospheric phenomena. The results contribute to a deeper understanding of cosmic ray anisotropy and the interplay between astrophysical and geophysical processes. Furthermore, the findings provide valuable insights for optimizing detection technologies and enhancing the accuracy of cosmic ray studies.
  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of experimental setup

    图 2  示波器上输出的两端PMT的过阈信号

    Fig. 2.  The over threshold signal of PMT at both ends output on the oscilloscope

    图 3  (a)标准γ源光输出谱, (b)能量刻度曲线

    Fig. 3.  (a) Standard γ source light output spectrum, (b) energy scale curve

    图 4  (a)实验期间的的气象数据信息图, (b)气压修正后的计数

    Fig. 4.  (a)Meteorological data information chart during the experiment, (b) Count after pressure correction

    图 5  本实验中的测量宇宙线缪子计数谱

    Fig. 5.  Measurement of cosmic ray muon spectra in this experiment

    图 6  本实验中的测量日期与时间相关的二维计数谱以及其在x和y轴上的投影

    Fig. 6.  The two-dimensional counting spectra of measurement dates and daliy time in this experiment, as well as their projections on the x and y axes

    图 7  同一日期下的羊八井宇宙线观测站中子-缪子望远镜的计数二维谱以及其在x和y轴上的投影

    Fig. 7.  The two-dimensional spectrum of the count of the neutron muon telescope at the Yangbajing Cosmic Ray Observatory on the same date, as well as its projection on the x and y axes

    图 8  归一化后的本实验所获得的宇宙线缪子计数与羊八井实验结果对比

    Fig. 8.  Comparison between the normalized cosmic ray muon counts obtained in this experiment and the results of the Yangbajing experiment

    Baidu
  • [1]

    刘佳, 曹臻 2024 物理 53 237Google Scholar

    Liu J, Cao Z 2024 Physics 53 237Google Scholar

    [2]

    李骢, 杨睿智, 曹臻 2024 科学通报 69 2698Google Scholar

    Li C, Yang R Z, Cao Z 2024 Chin. Sci. Bull. 69 2698Google Scholar

    [3]

    阿西克古, 周勋秀, 张云峰 2024 73 129201Google Scholar

    Axi Kugu, Zhou X X, Zhang Y F 2024 Acta Phys. Sin. 73 129201Google Scholar

    [4]

    Compton A H, Getting I A 1935 Physical Review 47 817Google Scholar

    [5]

    宋小健, 罗熙 2022 年中国地球科学联合学术年会论文集 — 1

    Song X J, Luo X 2022 Proc. of the Joint Annual Meeting of Chinese Earth Sciences - 1

    [6]

    仝帆, 贾焕玉, 周勋秀, 等 2015 原子核物理评论 32 286Google Scholar

    Tong F, Jia H Y, Zhou X X, et al 2015 Nucl. Phys. Rev. 32 286Google Scholar

    [7]

    刘珺, 周德文 2007 郑州大学学报 (理学版) 01 75

    Liu J, Zhou D W 2007 J. Zhengzhou Univ. (Nat. Sci. Ed.) 01 75

    [8]

    刘珺, 贾焕玉, 黄庆 2004 原子核物理评论 01 38Google Scholar

    Liu J, Jia H Y, Huang Q 2004 Nucl. Phys. Rev. 01 38Google Scholar

    [9]

    贾焕玉, 曹臻, 张慧敏 1994 高能物理与核物理 09 788

    Jia H Y, Cao Z, Zhang H M 1994 High Energy Phys. Nucl. Phys. 09 788

    [10]

    刘烨, 牛赫然, 李兵兵, 等 2023 72 140202Google Scholar

    Liu Y, Niu H R, Li B B, et al 2023 Acta Phys. Sin. 72 140202Google Scholar

    [11]

    Aemnomori M et al. 2005 The Asrophysical Journal 626 L29

    [12]

    王启奇, 张湘, 田立朝, 等 2023 核技术 46 17Google Scholar

    Wang Q Q, Zhang X, Tian L C, et al 2023 J.Nucl.Tech. 46 17Google Scholar

    [13]

    刘新铭, 宋小健, 耿泽坤, 等 2024 地球 67 1299Google Scholar

    Liu X M, Song X J, Geng Z K, et al 2024 Chinese J. Geophys. 67 1299Google Scholar

    [14]

    肖政耀, 王梓丞, 黄新, 等 2022 广西物理 43 8

    Xiao Z Y, Wang Z C, Huang X, et al 2022 Guangxi Phys. 43 8

    [15]

    何韦杰, 李波 2024 大学物理 43 60

    He W J, Li B 2024 College Phys. 43 60

    [16]

    尹俊, 张亚鹏, 倪发福, 等 2017 核电子学与探测技术 37 929Google Scholar

    Yin J, Zhang Y P, Ni F F, et al 2017 Nuclear Electronics Detection Technology 37 929Google Scholar

    [17]

    皮本松, 魏志勇, 王振, 等 2017 核技术 40 61Google Scholar

    Pi B S, Wei Z Y, Wang Z, et al 2017 J.Nucl.Tech. 40 61Google Scholar

    [18]

    Han J X, Ye Y L, Lou J L, et al 2023 Commun Phys 6 220Google Scholar

    [19]

    耿朋, 段利敏, 马朋, 等 2010 原子核物理评论 27 450Google Scholar

    Geng P, Duan L M, Ma Peng, et al 2010 Nuclear Physics Review 27 450Google Scholar

    [20]

    郝佳欣, 郭戈, 孙保华 2024 大学物理 43 55

    Hao J X, Guo G, Sun B H 2024 College Phys. 43 55

    [21]

    常乐, 刘应都, 杜龙, 等 2015 核技术 38 46Google Scholar

    Chang L, Liu Y D, Du L, et al 2015 J.Nucl.Tech. 38 46Google Scholar

    [22]

    Zhang S Y L T, Chen Z Q, Han Rui, et al 2013 Chinese Physics C 37 71

    [23]

    唐云秋, 卢红, 乐贵明, 等 2004 空间科学学报 24 219Google Scholar

    Tang Q Y, Lu H, Le G M, et al 2004 Chinese Journal of Space Science 24 219Google Scholar

    [24]

    Xu C L, Wang Y, Qin G, et al 2023 Research in Astronomy and Astrophysics 23 025010Google Scholar

    [25]

    Adamson P, et al 2010 Phys. Rev. D 81 012001Google Scholar

    [26]

    Dorman L I 1974 in Cosmic Rays, Variation and Space Exploration. North-Holland.

    [27]

    Erhart A, Wagner V, Wex A, et al 2024 The European Physical Journal C 84 1Google Scholar

    [28]

    周勋秀, 王新建, 黄代绘, 等 2015 64 149202Google Scholar

    Zhou X X, Wang X J, Huang D H, et al 2015 Acta Phys. Sin. 64 149202Google Scholar

    [29]

    Zhang J L, Tan Y H, Wang H, et al 2010 Nucl. Instrum. Methods Phys. Res. A 623 1030Google Scholar

    [30]

    Institute of High Energy Physics (ihep.ac.cn) http://ybjnm.ihep.ac.cn/.

  • [1] 李阳, 张艳红, 盛亮, 张美, 姚志明, 段宝军, 赵吉祯, 郭泉, 严维鹏, 李国光, 胡佳琦, 李豪卿, 李郎郎. 不同厚度ST401中子能谱响应测量与分析.  , doi: 10.7498/aps.73.20241198
    [2] 顾梓恒, 臧强, 郑改革. 外尔半金属调制的范德瓦耳斯声子极化激元色散性质.  , doi: 10.7498/aps.72.20230167
    [3] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响.  , doi: 10.7498/aps.72.20222048
    [4] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用.  , doi: 10.7498/aps.72.20230334
    [5] 钱黎明, 孙梦然, 郑改革. α相三氧化钼中各向异性双曲声子极化激元的耦合性质.  , doi: 10.7498/aps.72.20222144
    [6] 张丰, 刘虎, 祝凤荣. 膝区宇宙线广延大气簇射次级成分的特征.  , doi: 10.7498/aps.71.20221556
    [7] 黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉. 高海拔宇宙线观测实验中scaler模式的模拟研究.  , doi: 10.7498/aps.70.20210632
    [8] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制.  , doi: 10.7498/aps.70.20210747
    [9] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性.  , doi: 10.7498/aps.64.106101
    [10] 周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇. 近地雷暴电场与羊八井地面宇宙线关联的模拟研究.  , doi: 10.7498/aps.64.149202
    [11] 徐妙华, 李红伟, 刘峰, 刘必成, 杜飞, 张璐, 苏鲁宁, 李英骏, 李玉同, 陈佳洱, 张杰. 实时离子探测器塑料闪烁体性能的实验研究.  , doi: 10.7498/aps.61.105202
    [12] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质.  , doi: 10.7498/aps.61.068401
    [13] 王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰. 雷暴电场对宇宙射线次级粒子 子的影响研究.  , doi: 10.7498/aps.61.159202
    [14] 凌瑞良, 冯进, 冯金福. 三维各向异性耦合谐振子体系的量子化能谱与精确波函数.  , doi: 10.7498/aps.59.8348
    [15] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究.  , doi: 10.7498/aps.57.7729
    [16] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性.  , doi: 10.7498/aps.57.1746
    [17] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法.  , doi: 10.7498/aps.56.1443
    [18] 张国光, 欧阳晓平, 张建福, 王志强, 张忠兵, 马彦良, 张显鹏, 陈 军, 张小东, 潘洪波, 骆海龙, 刘毅娜. ST-401薄塑料闪烁体中子能量响应测量技术研究.  , doi: 10.7498/aps.55.2165
    [19] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法.  , doi: 10.7498/aps.53.2233
    [20] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法.  , doi: 10.7498/aps.53.783
计量
  • 文章访问数:  412
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-08

/

返回文章
返回
Baidu
map