-
The circular electron-positron collider (CEPC) requires a 3% precision in the measurement of dE/dx to identify long-lived charged particles. However, the measurement of dE/dx has a blind area for each of charged particles of
$\pi / \rm{K}$ ,$\pi / \rm{P}$ , and$\rm{K} / \rm{P}$ , having transverse momenta of 1 GeV/c, 1.6 GeV/c, and 2 GeV/c respectively. One potential solution is to use a high-precision time-of-flight (TOF) detector with a time resolution of less than 50 ps to fill in the blind area. To address this, we propose a small particle TOF detector that uses small plastic scintillators ($1 \;\; \mathrm{cm} \times 1 \;\; \mathrm{cm} \times 0.3 \;\; \mathrm{cm}$ ) silicon photomultipliers for readout. In this work, we introduce the construction of the detector and calibrate its performance by using${ }^{90} \mathrm{Sr} $ electron collimators and high-speed waveform acquisition electronics. Using a constant fraction timing method, we find that the time resolution of the detector is about 48 ps, satisfying the CEPC’s requirements for TOF detection.-
Keywords:
- particle identification /
- time of flight detector /
- silicon photomultiplier /
- time of flight resolution
[1] CEPC Study Group 2018 arXiv: 1809.00285[hep-ex]
[2] An F, Bai Y, Chen C, Chen X, Chen Z, Da Costa J G, Zhou N 2019 Chin. Phys. C 43 043002Google Scholar
[3] Cai C, Yu Z H, Zhang H H 2017 Nucl. Phys. B 921 181Google Scholar
[4] Zheng T, Xu J, Cao L, Yu D, Wang W, Prell S, Cheung Y E, Ruan M 2021 Chin. Phys. C 45 023001Google Scholar
[5] Chen C, Mo X, Selvaggi M, Li Q, Li G, Ruan M, Lou X 2017 arXiv: 1712.09517[hep-ex]
[6] Chen Z X, Yang Y, Ruan M Q, Wang D Y, Li G, Jin S, Ban Y 2017 Chin. Phys. C 41 023003Google Scholar
[7] Liu Z, Xu Y H, Zhang Y 2019 JHEP 6 1Google Scholar
[8] Cao Q H, Li Y, Yan B, Zhang Y, Zhang Z 2016 Nucl. Phys. B 909 197Google Scholar
[9] Chang W F, Ng J N, White G 2018 Phys. Rev. D 97 115015Google Scholar
[10] Bai Y, Chen C H, Fang Y Q, Li G, Ruan M Q, Shi J Y, Wang B, Kong P Y, Lan B Y, Liu Z F 2020 Chin. Phys. C 44 013001Google Scholar
[11] Chen L J, Zhu H B, Ai X C, Fu M, Kiuchi R, Liu Y, Liu Z A, Lou X C, Lu Y P, Ouyang Q, Zhou Y 2019 RDTM 3 1Google Scholar
[12] Liang H, Zhu Y, Lai P Z, Ruan M 2022 arXiv: 2209.00397[phys.ins-det]
[13] CEPC Study Group 2018 arXiv: 1811.10545[hep-ex]
[14] 张辉 2019 博士学位论文 (合肥: 中国科学技术大学)
Zhang H 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[15] An F, Prell S, Chen C, Cochran J, Lou X, Ruan M 2018 arXiv: 1803.05134[phys.ins-det]
[16] An F, Prell S, Chen C, Cochran J, Lou X, Ruan M 2018 Eur. Phys. J. C 78 1Google Scholar
[17] Xin S 2021 Bull. Am. Phys. Soc. 66 5
[18] Chiarello G, Corvaglia A, Grancagnolo F, Miccoli A, Panareo M, Tassielli G F 2019 Nucl. Instrum. Meth. Phys. Res. Sect. A 936 503Google Scholar
[19] Dong M Y 2018 JINST 1 3Google Scholar
[20] Ackermann U, Egger W, Sperr P, Dollinger G 2015 Nucl. Instrum. Meth. Phys. Res. Sect. A 786 5Google Scholar
[21] 王凤梅, 衡月昆, 吴冲, 赵小健, 孙志嘉, 吴金杰, 赵力, 赵玉达, 蒋林立 2006 高能物理与核物理 30 776
Wang F M, Heng Y K, Wu C, Zhao X J, Sun Z J, Wu J J, Zhao L, Zhao Y D, Jiang L L 2006 High Energy Phys. Nucl. Phys. 30 776
[22] Li S L, Heng Y K, Zhao T C, Fu Z W, Liu S L, Qian S, Liu S D, Chen X H, Jia R, Huang G R, Lei X C 2013 Chin. Phys. C 37 016003Google Scholar
[23] Wiener R I, Surti S, Kyba C C M, Newcomer F M, Van Berg R, Karp J S 2008 2008 IEEE Nucl. Sci. Conf. R. Dresden, Germany, October 19–25, 2008 p4101
[24] 钱森, 付在伟, 宁哲, 王贻芳, 衡月昆, 祁鸣 2010 第十五届全国核电子学与核探测技术学术年会论文集 中国贵阳, 2010年8月13日, 第225页
Qian S, Fu Z W, Ling Z, Wang Y F, Heng Y K, Qi M 2010 Proceedings of the 15th National Annual Conference on Nuclear Power Sub-science and Nuclear Detection Technology Guiyang, China, August 13, 2010 p225 (in Chinese)
-
图 1 依据不同带电粒子
$\mathrm{d}{E} / \mathrm{d}{x}$ 信息算得两带电粒子间的分辨程度S和横动量的关系, 实线代表$\mathrm{d}{E} / \mathrm{d}{x}$ 测量精度为4.2%, 虚线代表$\mathrm{d}{E} / \mathrm{d}{x}$ 测量精度为3%, 图中曲线依据碳材料的电离能损计算得到Figure 1. Based on the
$\mathrm{d}{E}/ \mathrm{d}{x}$ information of different charged particles, the relationship between the resolution of S and the transverse momentum of charged particles is calculated. The solid and dashed line represent the dE/dx resolution of 4.2% and 3%, respectively. The curve in the figure is calculated based on the ionization energy loss of carbon material图 5 通过宇宙射线符合测量得到的能谱和幅度谱分布 (a) CH1通道的能谱; (b) CH2通道的能谱; (c) CH1通道的幅度分布谱; (d) CH2通道的幅度分布谱
Figure 5. Energy spectrum and amplitude spectrum distribution obtained by cosmic rays coincidence measurement: (a) Energy spectrum of CH1 channel; (b) energy spectrum of CH2 channel; (c) amplitude distribution spectrum of CH1 channel; (d) amplitude distribution spectrum of CH2 channel
图 6 通过
$ { }^{90} \mathrm{Sr} $ 放射源符合测量得到的能谱和幅度谱分布 (a) CH1通道的能谱; (b) CH2通道的能谱; (c) CH1通道的幅度分布谱; (d) CH2通道的幅度分布谱Figure 6. Energy spectrum and amplitude spectrum distribution obtained by
$ { }^{90} \mathrm{Sr} $ radiation source coincidence measurement: (a) Energy spectrum of CH1 channel; (b) energy spectrum of CH2 channel; (c) amplitude distribution spectrum of CH1 channel; (d) amplitude distribution spectrum of CH2 channel.图 10 将有效事例的波形信号前沿的数据点进行线性拟合, 与x (时间)轴交点的两个横坐标相减得到了时间差分布图 (a)区间为幅度的5%—30%; (b) 区间为幅度的10%—30%
Figure 10. Linear fitting of data points at the rising front of the waveform signal of effective cases, and the time difference distribution diagram is obtained by subtracting the two abscissa of the intersection point of the x (time) axis: (a) Range is 5%–30% of amplitude; (b) range is 10%–30% of amplitude
-
[1] CEPC Study Group 2018 arXiv: 1809.00285[hep-ex]
[2] An F, Bai Y, Chen C, Chen X, Chen Z, Da Costa J G, Zhou N 2019 Chin. Phys. C 43 043002Google Scholar
[3] Cai C, Yu Z H, Zhang H H 2017 Nucl. Phys. B 921 181Google Scholar
[4] Zheng T, Xu J, Cao L, Yu D, Wang W, Prell S, Cheung Y E, Ruan M 2021 Chin. Phys. C 45 023001Google Scholar
[5] Chen C, Mo X, Selvaggi M, Li Q, Li G, Ruan M, Lou X 2017 arXiv: 1712.09517[hep-ex]
[6] Chen Z X, Yang Y, Ruan M Q, Wang D Y, Li G, Jin S, Ban Y 2017 Chin. Phys. C 41 023003Google Scholar
[7] Liu Z, Xu Y H, Zhang Y 2019 JHEP 6 1Google Scholar
[8] Cao Q H, Li Y, Yan B, Zhang Y, Zhang Z 2016 Nucl. Phys. B 909 197Google Scholar
[9] Chang W F, Ng J N, White G 2018 Phys. Rev. D 97 115015Google Scholar
[10] Bai Y, Chen C H, Fang Y Q, Li G, Ruan M Q, Shi J Y, Wang B, Kong P Y, Lan B Y, Liu Z F 2020 Chin. Phys. C 44 013001Google Scholar
[11] Chen L J, Zhu H B, Ai X C, Fu M, Kiuchi R, Liu Y, Liu Z A, Lou X C, Lu Y P, Ouyang Q, Zhou Y 2019 RDTM 3 1Google Scholar
[12] Liang H, Zhu Y, Lai P Z, Ruan M 2022 arXiv: 2209.00397[phys.ins-det]
[13] CEPC Study Group 2018 arXiv: 1811.10545[hep-ex]
[14] 张辉 2019 博士学位论文 (合肥: 中国科学技术大学)
Zhang H 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[15] An F, Prell S, Chen C, Cochran J, Lou X, Ruan M 2018 arXiv: 1803.05134[phys.ins-det]
[16] An F, Prell S, Chen C, Cochran J, Lou X, Ruan M 2018 Eur. Phys. J. C 78 1Google Scholar
[17] Xin S 2021 Bull. Am. Phys. Soc. 66 5
[18] Chiarello G, Corvaglia A, Grancagnolo F, Miccoli A, Panareo M, Tassielli G F 2019 Nucl. Instrum. Meth. Phys. Res. Sect. A 936 503Google Scholar
[19] Dong M Y 2018 JINST 1 3Google Scholar
[20] Ackermann U, Egger W, Sperr P, Dollinger G 2015 Nucl. Instrum. Meth. Phys. Res. Sect. A 786 5Google Scholar
[21] 王凤梅, 衡月昆, 吴冲, 赵小健, 孙志嘉, 吴金杰, 赵力, 赵玉达, 蒋林立 2006 高能物理与核物理 30 776
Wang F M, Heng Y K, Wu C, Zhao X J, Sun Z J, Wu J J, Zhao L, Zhao Y D, Jiang L L 2006 High Energy Phys. Nucl. Phys. 30 776
[22] Li S L, Heng Y K, Zhao T C, Fu Z W, Liu S L, Qian S, Liu S D, Chen X H, Jia R, Huang G R, Lei X C 2013 Chin. Phys. C 37 016003Google Scholar
[23] Wiener R I, Surti S, Kyba C C M, Newcomer F M, Van Berg R, Karp J S 2008 2008 IEEE Nucl. Sci. Conf. R. Dresden, Germany, October 19–25, 2008 p4101
[24] 钱森, 付在伟, 宁哲, 王贻芳, 衡月昆, 祁鸣 2010 第十五届全国核电子学与核探测技术学术年会论文集 中国贵阳, 2010年8月13日, 第225页
Qian S, Fu Z W, Ling Z, Wang Y F, Heng Y K, Qi M 2010 Proceedings of the 15th National Annual Conference on Nuclear Power Sub-science and Nuclear Detection Technology Guiyang, China, August 13, 2010 p225 (in Chinese)
Catalog
Metrics
- Abstract views: 2940
- PDF Downloads: 82
- Cited By: 0