-
集成化导光板下表面微结构分布设计是提高背光模组亮度均匀性的关键因素之一. 本文提出了小尺寸集成化导光板下表面微棱镜二维分布公式, 给出了微棱镜二维分布公式系数与导光板结构参数之间的关系表达式. 将上述公式组直接应用于不同结构参数的小尺寸集成化导光板下表面微棱镜二维分布设计, 无需借助设计人员的经验, 可直接获得亮度均匀性较高时的集成化导光板下表面微棱镜二维分布, 出射光亮度均匀性平均值可达84.94%. 仿真结果表明, 本文提出的微棱镜二维分布公式及系数关系表达式具有重要应用价值, 极大地节省了集成化背光模组的设计优化时间, 对于导光板表面微结构分布设计具有重要的参考价值.The design of the microstructure distribution on the bottom surface of the partial integrated light guide plate (PILGP) is one of the key factors to improve the luminance uniformity of the partial integrated backlight module (BLM). In this paper, the two-dimensional micro-prism expressions on the bottom surface of the small-sized PILGP are presented. The two-dimensional micro-prism expressions make the micro-prisms spread out on a two-dimensional scale of the bottom surface of the PILGP. By fitting and analyzing a large number of simulation data, the relationship expressions between the coefficients of the two-dimensional micro-prism expressions and the structural parameters of the PILGP are established. The above expressions are directly applied to the two-dimensional distribution design of micro-prism on the bottom surface of small-sized PILGPs with different structural parameters. Without the help of the designers’ experience and the multiple simulations of the software, the average value of luminance uniformity in the partial integrated BLMs is obtained to be 84.94%. The simulation results show that the two-dimensional micro-prism expressions and coefficient relation-expressions presented in this paper have important application value. Take the 5-inch partial integrated BLM for example. The two-dimensional distribution of the micro-prism on the bottom surface of the PILGP with high luminance uniformity can be obtained directly by using the above expressions. By fine-tuning the coefficients of two-dimensional micro-prism expressions, calculated by the coefficient relation-expressions, the utilization of light energy, illuminance uniformity and luminance uniformity of the partial integrated BLM respectively reach 90.69%, 88.02% and 92.17%, which meet the practical requirements. The optimization and design time of the partial integrated BLM are both greatly saved. Further, the two-dimensional micro-prism expressions on the bottom surface of the PILGP are analyzed and the physical mechanism is explained reasonably. This work is of significance for the distribution design of the microstructures on the surface of the LGP.
-
Keywords:
- optical design /
- partial integrated light guide plate /
- micro-prism /
- two-dimensional distribution expression
[1] Pan J W, Fan C W 2011 Opt. Express 19 20079Google Scholar
[2] Moon H R, Shin M H, Lee J Y, Jang K J, Chung Y O, Kim Y J 2015 J. Disp. Technol. 11 44
[3] Li C Y, Pan J W 2014 Appl. Opt. 53 1503Google Scholar
[4] Chen C F, Kuo S H 2014 J. Disp. Technol. 10 1030Google Scholar
[5] Chen B T, Pan J W 2015 Appl. Opt. 54 E80Google Scholar
[6] Huang B L, Lin J T, Ye Y, Xu S, Chen E G, Guo T L 2017 Opt. Laser Technol. 97 254Google Scholar
[7] Lin S F, Su C Y, Feng Z Y, Li X D 2017 J. Phys. D: Appl. Phys. 50 435601
[8] Chen B T, Pan J W 2018 Appl. Opt. 57 4386Google Scholar
[9] Xu P, Luo T Z, Zhang X L, Su Z J, Huang Y Y, Li X C, Zou Y 2018 Opt. Commun. 427 589Google Scholar
[10] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕 2019 68 038502Google Scholar
Xu P, Yang W, Zhang X L, Luo T Z, Huang Y Y 2019 Acta Phys. Sin. 68 038502Google Scholar
[11] Xu P, Yan Z L, Wan L L, Huang H X 2004 Proceedings of SPIE Holography Diffractive Optics and Applications II Beijing, China, November 8−11, 2004 p66
[12] Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159Google Scholar
[13] Xu P, Huang Y Y, Su Z J, Zhang X L 2014 Appl. Opt. 53 1322Google Scholar
[14] Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887Google Scholar
[15] Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809Google Scholar
[16] 黄海璇, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 64 154212Google Scholar
Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212Google Scholar
[17] Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar
[18] Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773Google Scholar
[19] Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485Google Scholar
[20] 徐平, 袁霞, 杨拓, 黄海璇, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 66 124201Google Scholar
Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar
[21] 徐平, 唐少拓, 袁霞, 黄海璇, 杨拓, 罗统政, 喻珺 2018 67 024202Google Scholar
Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 67 024202Google Scholar
[22] 陈祥贤, 徐平, 黄洁锋, 张旭琳, 王冰, 李贝贝 2009 光学学报 29 2516
Chen X X, Xu P, Huang J F, Zhang X L, Wang B, Li B B 2009 Acta Opt. Sin. 29 2516
[23] Kim Y C 2013 Optik 124 2171Google Scholar
-
表 1 5英寸集成化背光模组结构参数
Table 1. Structural parameters of 5-inch partial integrated backlight module.
项目 结构参数 PILGP材料和尺寸 聚甲基丙烯酸甲酯(PMMA), 116.3 mm × 68.7 mm × 0.5 mm PILGP上表面结构 高度88.6 μm、宽度180 μm、长度116 mm的ASCMCS单元, 密排 PILGP下表面结构 底宽0.049 mm、长度0.1 mm、α = 50°、β = 90°的内凹型微棱镜单元 LED发光强度和尺寸 6.6646 lm, 朗伯分布, 发散角110°, 1.2 mm × 2.5 mm × 0.4 mm LED数量和间距 10个, 6.56 mm, 等间距分布于PILGP的短边 平面反射膜 反射率95% 表 2 不同导光板宽度W下优化、计算系数By以及对应的背光模组亮度均匀性仿真值
Table 2. Simulation results of luminance uniformity with optimized and calculated By at different widths W of PILGPs.
W/mm 优化By 计算By 亮度均匀性% 优化By 计算By 42.5 0.24637 0.23627 92.85 90.47 68.7 0.23967 0.24818 94.22 93.81 95.0 0.24983 0.26013 88.66 85.70 108.0 0.26750 0.26604 89.62 91.27 134.2 0.28500 0.27794 85.85 83.53 147.3 0.28410 0.28390 85.72 83.17 表 3 不同导光板长度L下的计算系数Bx和Cx对应的亮度均匀性仿真值
Table 3. Simulation results of luminace uniformity with calculated Bx and Cx at different lengths L of PILGPs.
L/mm 计算Bx 计算Cx 亮度均匀性/% 101.1 0.69021 0.020072 81.35 108.7 0.70397 0.020456 88.84 116.3 0.71772 0.020840 81.57 123.6 0.73094 0.021209 80.91 130.8 0.74397 0.021573 85.89 137.9 0.75682 0.021932 80.85 145.1 0.76985 0.022295 86.63 表 4 PILGP下表面微棱镜二维分布的不同尺寸背光模组亮度均匀性
Table 4. Luminance uniformity of partial integrated backlight module with two-dimensional distribution of micro-prism on the bottom surface of PILGPs at different sizes.
PILGP尺寸/inch L/mm W/mm 亮度均匀性/% 4.7 108.6 66.3 87.52 5.2 119.5 73.1 84.24 5.5 132.3 65.6 91.49 5.8 139.3 69.0 80.05 6.1 146.1 72.4 81.38 表 5 分别具有BPO及分布公式组优化的微棱镜二维分布的5英寸背光模组性能参数仿真结果
Table 5. Simulation results of performance parameters in 5-inch partial integrated backlight modules with two-dimensional distribution of micro-prism optimized by BPO or distribution expressions.
性能参数 微棱镜二维分布优化模式 公式组 BPO 光能利用率/% 90.69 92.03 平均照度/Lux 8462.1 8571.0 平均亮度/Nit 6135.4 6394.6 照度均匀性/% 88.02 87.07 亮度均匀性/% 92.17 91.94 -
[1] Pan J W, Fan C W 2011 Opt. Express 19 20079Google Scholar
[2] Moon H R, Shin M H, Lee J Y, Jang K J, Chung Y O, Kim Y J 2015 J. Disp. Technol. 11 44
[3] Li C Y, Pan J W 2014 Appl. Opt. 53 1503Google Scholar
[4] Chen C F, Kuo S H 2014 J. Disp. Technol. 10 1030Google Scholar
[5] Chen B T, Pan J W 2015 Appl. Opt. 54 E80Google Scholar
[6] Huang B L, Lin J T, Ye Y, Xu S, Chen E G, Guo T L 2017 Opt. Laser Technol. 97 254Google Scholar
[7] Lin S F, Su C Y, Feng Z Y, Li X D 2017 J. Phys. D: Appl. Phys. 50 435601
[8] Chen B T, Pan J W 2018 Appl. Opt. 57 4386Google Scholar
[9] Xu P, Luo T Z, Zhang X L, Su Z J, Huang Y Y, Li X C, Zou Y 2018 Opt. Commun. 427 589Google Scholar
[10] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕 2019 68 038502Google Scholar
Xu P, Yang W, Zhang X L, Luo T Z, Huang Y Y 2019 Acta Phys. Sin. 68 038502Google Scholar
[11] Xu P, Yan Z L, Wan L L, Huang H X 2004 Proceedings of SPIE Holography Diffractive Optics and Applications II Beijing, China, November 8−11, 2004 p66
[12] Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159Google Scholar
[13] Xu P, Huang Y Y, Su Z J, Zhang X L 2014 Appl. Opt. 53 1322Google Scholar
[14] Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887Google Scholar
[15] Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809Google Scholar
[16] 黄海璇, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 64 154212Google Scholar
Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212Google Scholar
[17] Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar
[18] Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773Google Scholar
[19] Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485Google Scholar
[20] 徐平, 袁霞, 杨拓, 黄海璇, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 66 124201Google Scholar
Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar
[21] 徐平, 唐少拓, 袁霞, 黄海璇, 杨拓, 罗统政, 喻珺 2018 67 024202Google Scholar
Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 67 024202Google Scholar
[22] 陈祥贤, 徐平, 黄洁锋, 张旭琳, 王冰, 李贝贝 2009 光学学报 29 2516
Chen X X, Xu P, Huang J F, Zhang X L, Wang B, Li B B 2009 Acta Opt. Sin. 29 2516
[23] Kim Y C 2013 Optik 124 2171Google Scholar
计量
- 文章访问数: 7581
- PDF下载量: 48
- 被引次数: 0