Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Uncertainty in prediction of pulsed field ablation caused by parameter diversity in quantifying conductivity models

Zhuang Jie Han Rui Ji Zhen-Yu Shi Fu-Kun

Citation:

Uncertainty in prediction of pulsed field ablation caused by parameter diversity in quantifying conductivity models

Zhuang Jie, Han Rui, Ji Zhen-Yu, Shi Fu-Kun
PDF
HTML
Get Citation
  • Pulsed field ablation (PFA) is a new type of physical energy source in the fields of tumor and atrial fibrillation ablation, which is based on irreversible electroporation with non-thermal, clear ablation boundaries, selective killing, and rapid advantages. The PFA triggers off the changes in the electrical conductivity of ablation zone, which can be described by a step function and used to predict the ablation zone. However, current research does not compare the advantages and disadvantages of different conductivity models, nor does it consider the effects of model parameter change caused by individual differences and errors on the efficacy of PFA. This work is devoted to comparing two commonly used conductivity models (Heaviside model and Gompertz model), and quantifying the influence of model input uncertainty on model output and PFA ablation zone.In this work, we carry out uncertainty quantification and sensitivity analysis to quantify the influence of model parameter uncertainty on model output, clarify the parameter sensitivity distribution, and provide model selection criteria from the perspectives of model complexity, parameter sensitivity distribution, and model robustness. Combined with finite element simulation, the study quantifies the effects of uncertainty in the most sensitive parameters of the conductivity model and ablation threshold on the PFA ablation zone. The results show that different conductivity models exhibit different robustness under the same proportion of variation in parameters. The Heaviside model, which is determined by a single factor, has strong robustness. The uncertainty output of the Gompertz model is jointly determined by multiple sensitivity parameters, making it susceptible to various conditions. The ablation threshold and pre-treatment tissue conductivity are the two most sensitive parameters affecting the assessment of ablation depth. Changes in the ablation threshold result in a Gaussian distribution of ablation depth. The greater the change in pre-treatment tissue conductivity, the greater the change in ablation depth is, which, however, follows a nonlinear proportional relationship. This approach can improve the accuracy and reliability of PFA ablation prediction, and provide a visual and global way to show the influence of input uncertainties on model output and parameter sensitivity ranking, thus effectively improving the accuracy of model prediction, reducing computational costs, and optimizing the selection of candidate models. This strategy can be applied to a variety of mathematical physics and simulation models to enhance model credibility and simplify the models.
      Corresponding author: Shi Fu-Kun, fukunshi@sibet.ac.cn
    • Funds: Project supported by the Basic Research Pilot Project of Suzhou, China (Grant No. SJC2021025), the Natural Science Foundation of Shandong Province, China, (Grant No. ZR2022QE168), and the National Key R&D Program of China (Grant No. 2019YFC0119102).
    [1]

    Ivorra A, Al-Sakere B, Rubinsky B, Mir L M 2009 Phys. Med. Biol. 54 5949Google Scholar

    [2]

    Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir L M, Miklavcic D 2005 IEEE T. Bio-Med. Eng. 52 816Google Scholar

    [3]

    Garcia P A, Rossmeisl J H, Davalos R V 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Guadalajara, Mexico, 30 Auguest–3 September, 2011 pp739–742

    [4]

    Perera-Bel E, Aycock K N, Salameh Z S, Gómez-Barea M, Davalos R V, Ivorra A, Ballester M A G 2022 IEEE T. Bio-Med. Eng. 70 1902

    [5]

    Neal R E, Garcia P A, Robertson J L, Davalos R V 2012 IEEE T. Bio-Med. Eng. 59 1076Google Scholar

    [6]

    Zhao Y, Bhonsle S, Dong S, Lyu Y, Liu H, Safaai-Jazi A, Davalos R V, Yao C 2018 IEEE T. Bio-Med. Eng. 65 1810Google Scholar

    [7]

    Shi F, Steuer A, Zhuang J, Kolb J F 2019 IEEE T. Bio-Med. Eng. 66 2010Google Scholar

    [8]

    郭雨怡, 石富坤, 王群, 季振宇, 庄杰 2022 71 068701Google Scholar

    Guo Y Y, Shi F K, Wang Q, Ji Z Y, Zhuang J 2022 Acta Phys. Sin. 71 068701Google Scholar

    [9]

    Shi F, Kolb J F 2020 Biosens. Bioelectron. 157 112149Google Scholar

    [10]

    Bounik R, Cardes F, Ulusan H, Modena M M, Hierlemann A 2022 BMEF 2022 9857485

    [11]

    Corovic S, Lackovic I, Sustaric P, Sustar T, Rodic T, Miklavcic D 2013 BioMed. Eng. OnLine 12 16Google Scholar

    [12]

    Zhao Y J, Davalos R V 2020 Appl. Phys. Lett. 117 143702Google Scholar

    [13]

    姚陈果, 郑爽, 赵亚军, 刘红梅, 王艺麟, 董守龙 2020 高电压技术 46 1830

    Yao C G, Zhen S, Zhao Y Z, Liu H M, Wang Y L, Dong S L 2020 High Voltage Engineering 46 1830 (in Chinese)

    [14]

    Smith R C 2013 Uncertainty Quantification: Theory, Implementation, and Applications (Vol. 12) (Siam)

    [15]

    Lai X, Wang S, Ma S, Xie J, Zheng Y 2020 Electrochimica Acta 330 135239Google Scholar

    [16]

    Vazquez-Arenas J, Gimenez L E, Fowler M, Han T, Chen S K 2014 Energ. Convers. Manage. 87 472Google Scholar

    [17]

    Edouard C, Petit M, Forgez C, Bernard J, Revel R 2016 JOPS 325 482

    [18]

    Ye X, Liu S, Yin H, He Q, Xue Z, Lu C, Su S 2021 Front. Cardiovasc. Med. 8

    [19]

    张家明 陈志坚 2022 临床心血管病杂志 38 851

    Zhang J M, Chen Z J 2022 J Clin. Cardiol. 38 851

    [20]

    O’Brien T J, Lorenzo M F, Zhao Y, Neal Ii R E, Robertson J L, Goldberg S N, Davalos R V 2019 Int. J. Hyperther. 36 952Google Scholar

    [21]

    Lemieux C 2009 Monte Carlo and Quasi-Monte Carlo Sampling (Springer, New York, NY)

    [22]

    Haemmerich D, Schutt D J, Wright A S, Webster J G, Mahvi D M 2009 Physiol. Meas. 30 459Google Scholar

    [23]

    Sobol′ I M 2001 Math. Comput. Simulat. 55 271Google Scholar

    [24]

    Oliveira J F, Jorge D C P, Veiga R V, Rodrigues M S, Torquato M F, da Silva N B, Fiaccone R L, Cardim L L, Pereira F A C, de Castro C P, Paiva A S S, Amad A A S, Lima E A B F, Souza D S, Pinho S T R, Ramos P I P, Andrade R F S 2021 Nat. Commun. 12 333Google Scholar

    [25]

    Kaminska I, Kotulska M, Stecka A, Saczko J, Drag-Zalesinska M, Wysocka T, Choromanska A, Skolucka N, Nowicki R, Marczak J, Kulbacka J 2012 Gen. Physiol. Biophys. 31 19Google Scholar

    [26]

    Reddy V Y, Koruth J, Jais P, Petru J, Timko F, Skalsky I, Hebeler R, Labrousse L, Barandon L, Kralovec S, Funosako M, Mannuva B B, Sediva L, Neuzil P 2018 JACC: Clin. Electrophy. 4 987Google Scholar

    [27]

    Belalcazar A 2021 Heart Rhythm 2 560Google Scholar

    [28]

    Kos B, Zupanic A, Kotnik T, Snoj M, Sersa G, Miklavcic D 2010 J. Membrane Biol. 236 147Google Scholar

    [29]

    Shi F, Zhuang J, Kolb J F 2019 J. Phys. D 52 495401Google Scholar

    [30]

    Perera-Bel E, Mercadal B, Garcia-Sanchez T, Ballester M A G, Ivorra A 2021 IEEE T. Bio-Med. Eng. 68 1318

  • 图 1  1/6三维PVI脉冲电场消融模型

    Figure 1.  One-sixth three-dimensional PVI pulsed electric field ablation model.

    图 2  H模型和G模型的电导率输出的平均值、标准差和90%预测空间

    Figure 2.  Mean value, standard deviation, and 90% prediction space of conductivity output of H and G models.

    图 3  H模型 和 G 模型的各参数一阶Sobol敏感度指数和平均Sobol指数

    Figure 3.  First order Sobol sensitivity index and average Sobol index of each parameter of the H and G models.

    图 4  三维PVI消融模型的电场分布

    Figure 4.  Electric field distribution of three-dimensional PVI ablation model.

    图 5  改变σ0, 不确定度分别为10% ((a), (c))和20% ((b), (d))时, 消融深度的统计结果

    Figure 5.  The statistical results of the ablation depth by changing σ0 with uncertainty of 10% ((a), (c)) and 20%((b), (d)).

    图 6  消融阈值的均匀分布导致消融深度呈高斯分布

    Figure 6.  The uniform distribution of the ablation threshold results in a Gaussian distribution of the ablation depth.

    图 7  用于多模型评估的UQ和SA示意图

    Figure 7.  Schematic diagram for UQ and SA for multi-model evaluation.

    表 1  不同模型的参数

    Table 1.  Parameters for different models

    参数模型
    Heaviside Gompertz
    σ0/(S·m–1) 0.23 0.23
    α 0.02 0.02
    T0/℃ 37 37
    T/℃ 40 40
    E0/(V·cm–1) 850
    E1/(V·cm–1 1550
    W 0.90
    σm/(S·m–1) 0.44
    Ei/(V·cm–1 870
    Em/(V·cm–1) 1038
    D 18
    DownLoad: CSV
    Baidu
  • [1]

    Ivorra A, Al-Sakere B, Rubinsky B, Mir L M 2009 Phys. Med. Biol. 54 5949Google Scholar

    [2]

    Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir L M, Miklavcic D 2005 IEEE T. Bio-Med. Eng. 52 816Google Scholar

    [3]

    Garcia P A, Rossmeisl J H, Davalos R V 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Guadalajara, Mexico, 30 Auguest–3 September, 2011 pp739–742

    [4]

    Perera-Bel E, Aycock K N, Salameh Z S, Gómez-Barea M, Davalos R V, Ivorra A, Ballester M A G 2022 IEEE T. Bio-Med. Eng. 70 1902

    [5]

    Neal R E, Garcia P A, Robertson J L, Davalos R V 2012 IEEE T. Bio-Med. Eng. 59 1076Google Scholar

    [6]

    Zhao Y, Bhonsle S, Dong S, Lyu Y, Liu H, Safaai-Jazi A, Davalos R V, Yao C 2018 IEEE T. Bio-Med. Eng. 65 1810Google Scholar

    [7]

    Shi F, Steuer A, Zhuang J, Kolb J F 2019 IEEE T. Bio-Med. Eng. 66 2010Google Scholar

    [8]

    郭雨怡, 石富坤, 王群, 季振宇, 庄杰 2022 71 068701Google Scholar

    Guo Y Y, Shi F K, Wang Q, Ji Z Y, Zhuang J 2022 Acta Phys. Sin. 71 068701Google Scholar

    [9]

    Shi F, Kolb J F 2020 Biosens. Bioelectron. 157 112149Google Scholar

    [10]

    Bounik R, Cardes F, Ulusan H, Modena M M, Hierlemann A 2022 BMEF 2022 9857485

    [11]

    Corovic S, Lackovic I, Sustaric P, Sustar T, Rodic T, Miklavcic D 2013 BioMed. Eng. OnLine 12 16Google Scholar

    [12]

    Zhao Y J, Davalos R V 2020 Appl. Phys. Lett. 117 143702Google Scholar

    [13]

    姚陈果, 郑爽, 赵亚军, 刘红梅, 王艺麟, 董守龙 2020 高电压技术 46 1830

    Yao C G, Zhen S, Zhao Y Z, Liu H M, Wang Y L, Dong S L 2020 High Voltage Engineering 46 1830 (in Chinese)

    [14]

    Smith R C 2013 Uncertainty Quantification: Theory, Implementation, and Applications (Vol. 12) (Siam)

    [15]

    Lai X, Wang S, Ma S, Xie J, Zheng Y 2020 Electrochimica Acta 330 135239Google Scholar

    [16]

    Vazquez-Arenas J, Gimenez L E, Fowler M, Han T, Chen S K 2014 Energ. Convers. Manage. 87 472Google Scholar

    [17]

    Edouard C, Petit M, Forgez C, Bernard J, Revel R 2016 JOPS 325 482

    [18]

    Ye X, Liu S, Yin H, He Q, Xue Z, Lu C, Su S 2021 Front. Cardiovasc. Med. 8

    [19]

    张家明 陈志坚 2022 临床心血管病杂志 38 851

    Zhang J M, Chen Z J 2022 J Clin. Cardiol. 38 851

    [20]

    O’Brien T J, Lorenzo M F, Zhao Y, Neal Ii R E, Robertson J L, Goldberg S N, Davalos R V 2019 Int. J. Hyperther. 36 952Google Scholar

    [21]

    Lemieux C 2009 Monte Carlo and Quasi-Monte Carlo Sampling (Springer, New York, NY)

    [22]

    Haemmerich D, Schutt D J, Wright A S, Webster J G, Mahvi D M 2009 Physiol. Meas. 30 459Google Scholar

    [23]

    Sobol′ I M 2001 Math. Comput. Simulat. 55 271Google Scholar

    [24]

    Oliveira J F, Jorge D C P, Veiga R V, Rodrigues M S, Torquato M F, da Silva N B, Fiaccone R L, Cardim L L, Pereira F A C, de Castro C P, Paiva A S S, Amad A A S, Lima E A B F, Souza D S, Pinho S T R, Ramos P I P, Andrade R F S 2021 Nat. Commun. 12 333Google Scholar

    [25]

    Kaminska I, Kotulska M, Stecka A, Saczko J, Drag-Zalesinska M, Wysocka T, Choromanska A, Skolucka N, Nowicki R, Marczak J, Kulbacka J 2012 Gen. Physiol. Biophys. 31 19Google Scholar

    [26]

    Reddy V Y, Koruth J, Jais P, Petru J, Timko F, Skalsky I, Hebeler R, Labrousse L, Barandon L, Kralovec S, Funosako M, Mannuva B B, Sediva L, Neuzil P 2018 JACC: Clin. Electrophy. 4 987Google Scholar

    [27]

    Belalcazar A 2021 Heart Rhythm 2 560Google Scholar

    [28]

    Kos B, Zupanic A, Kotnik T, Snoj M, Sersa G, Miklavcic D 2010 J. Membrane Biol. 236 147Google Scholar

    [29]

    Shi F, Zhuang J, Kolb J F 2019 J. Phys. D 52 495401Google Scholar

    [30]

    Perera-Bel E, Mercadal B, Garcia-Sanchez T, Ballester M A G, Ivorra A 2021 IEEE T. Bio-Med. Eng. 68 1318

  • [1] Guo Yu-Yi, Shi Fu-Kun, Wang Qun, Ji Zhen-Yu, Zhuang Jie. A review on bioelectrical effects of cellular organelles by high voltage nanosecond pulsed electric fields. Acta Physica Sinica, 2022, 71(6): 068701. doi: 10.7498/aps.71.20211850
    [2] Gao Dang-Li, Li Lan-Xing, Feng Xiao-Juan, Chong Bo, Xin Hong, Zhao Jin, Zhang Xiang-Yu. Regulation of sensitivity of Yb concentration to power-dependent upconversion luminescence colors. Acta Physica Sinica, 2018, 67(22): 223201. doi: 10.7498/aps.67.20181167
    [3] Liang Xiao, Wang Rui-Li. Sensitivity analysis and validation of detonation computational fluid dynamics model. Acta Physica Sinica, 2017, 66(11): 116401. doi: 10.7498/aps.66.116401
    [4] Song Jian-Jun, Bao Wen-Tao, Zhang Jing, Tang Zhao-Huan, Tan Kai-Zhou, Cui Wei, Hu Hui-Yong, Zhang He-Ming. Double ellipsoid model for conductivity effective mass along [110] orientation in (100) Si-based strained p-channel metal-oxide-semiconductor. Acta Physica Sinica, 2016, 65(1): 018501. doi: 10.7498/aps.65.018501
    [5] Fu Zhi-Jian, Jia Li-Jun, Xia Ji-Hong, Tang Ke, Li Zhao-Hong, Quan Wei-Long, Chen Qi-Feng. A simple and effective simulation for electrical conductivity of warm dense titanium. Acta Physica Sinica, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [6] Wang Song, Wu Zhan-Cheng, Tang Xiao-Jin, Sun Yong-Wei, Yi Zhong. Study on temperature and electric field dependence of conductivity in polyimide. Acta Physica Sinica, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [7] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [8] Gao Shao-Hua, Wang Yu-Xia, Wang Hong-Wei, Yuan Shuai. Research on the conductivity of KAg4 I5-AgI composite. Acta Physica Sinica, 2011, 60(8): 086601. doi: 10.7498/aps.60.086601
    [9] Luo Tao, Zhu Wei, Shi Qin-Wei, Wang Xiao-Ping. Effect of the spectral function of quasiparticle on minimal conductivity of graphene. Acta Physica Sinica, 2008, 57(6): 3775-3779. doi: 10.7498/aps.57.3775
    [10] Jiang Ji-Hao, Wang Gui-Ji, Yang Yu. A new method to measure the electrical conductivity of metals in electric exploding. Acta Physica Sinica, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [11] Quan Rong-Hui, Han Jian-Wei, Huang Jian-Guo, Zhang Zhen-Long. Modeling analysis of radiation induced conductivity in electrical insulator. Acta Physica Sinica, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [12] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [13] Qiu Sheng-De, Hu Cheng-Zheng, Wang Ai-Jun, Zhou Xiang. Optical conductivity of decagonal quasicrystals. Acta Physica Sinica, 2006, 55(2): 743-747. doi: 10.7498/aps.55.743
    [14] Wei Bing, Ge De-Biao. Reconstruction of transverse permittivity and conductivity for a lossy anisotropic plate. Acta Physica Sinica, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [15] GUO HONG-XIA, MAI ZHEN-HONG. INFLUENCE OF ELECTRICAL CONDUCTIVITY ON ELECTRORHEOLOGY EFFECT. Acta Physica Sinica, 1996, 45(1): 65-72. doi: 10.7498/aps.45.65
    [16] JIANG QI, GONG CHANG-DE. A SELF-CONSISTENT STUDY OF THE CONDUCTIVITIES OF THE DISORDERED LAYER SYSTEM. Acta Physica Sinica, 1989, 38(4): 593-599. doi: 10.7498/aps.38.593
    [17] JIANG QI, GONG CHANG-DE. CONDUCTIVITY IN THE DISORDERED LAYER SYSTEM. Acta Physica Sinica, 1988, 37(6): 941-949. doi: 10.7498/aps.37.941
    [18] CHEN LI-QUAN, LIU JUN, WANG CHAO-YING, HE YUAN-KANG, CHEN ZHU-SHENG, LIU YONG-PING. EFFECT OF SOME FACTORS ON CONDUCTIVITIES OF POLYMER IONIC CONDUCTORS. Acta Physica Sinica, 1987, 36(1): 60-66. doi: 10.7498/aps.36.60
    [19] ZHANG ZHAO-QING. ELECTRICAL CONDUCTIVITY OF LIQUID METALS AND AMORPHOUS SOLIDS-COHERENT-POTENTIAL APPROXIMATION. Acta Physica Sinica, 1982, 31(3): 294-310. doi: 10.7498/aps.31.294
    [20] YAN CHENG. THE INFLUENCE OF THICKNESS, APPLIED ELECTRIC FIELD AND MEDIUM TEMPERATURE ANNEALING ON THE ACTIVATION ENERGIES FOR CONDUCTIVITY OF a-Si:H. Acta Physica Sinica, 1982, 31(12): 62-74. doi: 10.7498/aps.31.62
Metrics
  • Abstract views:  3563
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  15 February 2023
  • Accepted Date:  03 April 2023
  • Available Online:  16 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回
Baidu
map