搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷大气压等离子体激发电场对细胞膜电穿孔及其转运功能的影响

胡笑钏 张艺淼 金欣瑞 邢人芳 张瑞

引用本文:
Citation:

冷大气压等离子体激发电场对细胞膜电穿孔及其转运功能的影响

胡笑钏, 张艺淼, 金欣瑞, 邢人芳, 张瑞

Effect of Cold Atmospheric Plasma Induced Electric Fields on Cell Membrane Electroporation and Related Transport Functions

HU Xiaochuan, ZHANG Yimiao, JIN Xinrui, XING Renfang, ZHANG Rui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 冷大气压等离子体(cold atmospheric plasma,CAP)由于其具有“选择性”杀伤癌细胞的效果,被认为是一种极具潜力的癌症治疗手段。然而,CAP对癌细胞的“选择性”杀伤作用相关的物理模型及CAP与癌细胞相互作用的微观机理仍然匮乏。本文采用分子动力学方法模拟了CAP激发电场引起的细胞膜电穿孔(electroporation,EP)效应,并采用伞形采样法计算了ROS(reactive oxygen species,ROS)通过EP形成的不同阶段的孔结构进入细胞内部的自由能剖面。结果表明,相较于正常细胞膜,胆固醇含量较低的癌细胞膜发生EP的电场强度阈值更低,且EP发生时间更快;对于ROS的转运过程而言,由于癌细胞膜胆固醇含量更低,在EP的各个阶段下ROS的自由能势垒更低,因此在EP的各个阶段下,ROS内流的时间均早于正常细胞。本文从分子模拟的角度探索了CAP激发电场作用下EP的形成过程,以及EP的不同阶段中ROS转运的潜在机会,有利于更清楚地阐述CAP“选择性”抗癌作用的微观机理,并为CAP癌症治疗技术、设备和手段的研发提供了重要参考,促进了CAP在临床应用方面的发展。
    Cold atmospheric plasma (CAP), due to its “selective” anti-cancer effect, is considered to be a highly promising cancer treatment method. However, the physical theoretical explanation about the effect and the microscopic interactive mechanisms between CAP and tumors are still lacking. In this work, the CAP-induced electric field-caused electroporation (EP) processes of the cell membrane are modeled based on molecular dynamics. Additionally, the umbrella sampling method was carried out to compute the free energy profile of the intracellular permeation processes of the reactive oxygen species (ROS) through EP-formed pore-like structures at different EP stages. Comparative results showed that: 1) Cancer cell membranes with lower cholesterol components showed lower EP-generation threshold and faster EP-formation; 2) Lower free-energy barrier and earlier occurrence of free-energy barrier reduction are shown in all EP stages in cancer cell membrane. The Above results explain the difference between cancer cells and normal cells when affected by CAP. Our work thoroughly explores the formation of CAP-induced EP and the transport of ROS through EP-formed pore-like structures, which contributes to a more lucid understanding of the microscopic mechanisms of the “selective” anti-cancer effect of CAP. And provides crucial references for the development of CAP-based cancer treatment methodologies, technologies, and devices, thereby facilitating the translation of CAP into clinical applications.
  • [1]

    Lu X P, Luo J Y, Nie L L, Liu D W, Zhang G J, Liu D X, Shao T, Fang Z, Jin S S, Zhao Y J, Zhang Y T, Zou L, Wang X L, Li H P, Zhang Y, Liu D P, Yang D Z, Chen Z T, Huang Q, Chen C, Wu S Q, Liu Q J, Pei X K, Yan X, Cheng H, Xiong Q, Shi Q, Song K, Cao Y G, Chen H X, Feng A P, Xia Y M, Bai F, Yang C J, Yang R G, He G Y 2024High Voltage Engineering 503555(卢新培, 罗婧怡, 聂兰兰, 刘大伟, 张冠军, 刘定新, 邵涛, 方志, 金珊珊, 赵亚军, 张远涛, 邹亮, 王晓龙, 李和平, 张宇, 刘东平, 杨德正, 陈支通, 黄青, 程诚, 吴淑群, 刘巧珏, 裴学凯, 闫旭, 程鹤, 熊青, 石琦, 宋珂, 曹颖光, 陈宏翔, 冯爱平, 夏育民, 白帆, 杨春俊, 杨润功, 何光源2024 高电压技术 50 3555)

    [2]

    Chen X, Wang X, Zhang B, Yuan M, Yang S 2023Chinese Phys. B 32115201

    [3]

    Fang J, Zhang Y, Lu C, Gu L, Xu S, Guo Y, Shi J 2024Chinese Phys. B 33 015201

    [4]

    Xu H, Gao J, Jia P, Ran J, Chen J, Li J 2024Chinese Phys. B 33 015205

    [5]

    Schleusser S, Schulz L, Song J, Deichmann H, Griesmann A-C, Stang F H, Mailaender P, Kraemer R, Kleemann M, Kisch T 2022 Microcirculation 29 e12754

    [6]

    Filipic A, Gutierrez-Aguirre I, Primc G, Mozetic M, Dobnik D 2020 Trends in Biotechnology 38 1278

    [7]

    Nguyen L, Lu P, Boehm D, Bourke P, Gilmore B F, Hickok N J, Freeman T A 2019 Biol. Chem. 400 77

    [8]

    Zhou R, Zhang X, Zong Z, Li J, Yang Z, Liu D, Yang S 2015Chinese Phys. B 24 085201

    [9]

    Borges A C, Kostov K G, Pessoa R S, de Abreu G M A, Lima G d M G, Figueira L W, Koga-Ito C Y 2021 Appl. Sci. 11 1975

    [10]

    von Woedtke T, Laroussi M, Gherardi M 2022 Plasma Sources Sci.T. 31 054002

    [11]

    Min T, Xie X, Ren K, Sun T, Wang H, Dang C, Zhang H 2022 Frontiers in Medicine 9 884887

    [12]

    Yan D, Horkowitz A, Wang Q, Keidar M 2021 Plasma Processes Polym. 18 e2100020

    [13]

    Yan D, Sherman J H, Keidar M 2017 Oncotarget 8 15977

    [14]

    Yao C G 2018High Voltage Engineering 44 248(姚陈果2018 高电压技术 44 248)

    [15]

    Graves D B 2012 J. Phys. D Appl. Phys. 45 263001

    [16]

    Haberl S, Miklavcic D, Sersa G, Frey W, Rubinsky B 2013 IEEE Electr. Insul. M 29 29

    [17]

    Ruzgys P, Novickij V, Novickij J, Satkauskas S 2019 Bioelectrochemistry 127 87

    [18]

    Wu E, Nie L, Liu D, Lu X, Ostrikov K 2023 Free Radical Bio. Med. 198 109

    [19]

    Szlasa W, Kielbik A, Szewczyk A, Rembialkowska N, Novickij V, Tarek M, Saczko J, Kulbacka J 2021 Molecules 26 154

    [20]

    Sun Y K, Guo L H, Wang K C, Wang S M, Gong Y B 2021Acta Phys. Sin. 70 327(孙远昆, 郭良浩, 王凯程, 王少萌, 宫玉彬2021 70 327)

    [21]

    Xing R F, Chen M, Li R Y, Li S Q, Zhang R, Hu X C 2024Acta Phys. Sin. 73 295(邢人芳, 陈明, 李芮羽, 李淑倩, 张瑞, 胡笑钏2024 73 295)

    [22]

    Hu X, Jin X, Xing R, Liu Y, Feng Y, Lyu Y, Zhang R 2023 Results Phys. 51 106621

    [23]

    Yang S, Zhao T, Zou L, Wang X, Zhang Y 2019 Phys. Plasmas 26 083504

    [24]

    Zhao X, Ding W, Wang H, Wang Y, Liu Y, Li Y, Liu C 2023 J. Chem. Phys. 159 045101

    [25]

    Bera I, Payghan P V 2019 Curr. Pharm. Design 25 3339

    [26]

    Arbeitman C R, Rojas P, Ojeda-May P, Garcia M E 2021 Nat. Commun. 12 5407

    [27]

    Semmler M L, Bekeschus S, Schäfer M, Bernhardt T, Fischer T, Witzke K, Seebauer C, Rebl H, Grambow E, Vollmar B, Nebe J B, Metelmann H-R, Woedtke T v, Emmert S, Boeckmann L 2020 Cancers 12 269

    [28]

    Van der Paal J, Neyts E C, Verlackt C C W, Bogaerts A 2016 Chem. Sci. 7 489

    [29]

    Guo F, Zhou J, Wang J, Qian K, Qu H 2023 Phys. Chem. Chem. Phys. 25 14096

    [30]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101

    [31]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [32]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [33]

    Nose S 1984 Mol. Phys. 52 255

    [34]

    Hess B, Bekker H, Berendsen H J C, Fraaije J 1997 J. Comput. Chem. 18 1463

    [35]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089

    [36]

    Yusupov M, Van der Paal J, Neyts E C, Bogaerts A 2017 BBA-Gen. Subjects 1861 839

    [37]

    Hu Q, Joshi R P, Schoenbach K H 2005 Phys. Rev. E 72 031902

    [38]

    Hu Q, Viswanadham S, Joshi R P, Schoenbach K H, Beebe S J, Blackmore P F 2005 Phys. Rev. E 71 031914

    [39]

    Schmid N, Eichenberger A P, Choutko A, Riniker S, Winger M, Mark A E, van Gunsteren W F 2011 Eur. Biophy. J. Biophy. 40 843

    [40]

    Cordeiro R M, Yusupov M, Razzokov J, Bogaerts A 2020 J. Phys. Chem. B 124 1082

    [41]

    Neto A J P, Cordeiro R M 2016 BBA-Biomembranes 1858 2191

    [42]

    Razzokov J, Yusupov M, Cordeiro R M, Bogaerts A 2018 J. Phys. D Appl. Phys. 51 365203

    [43]

    Wu S Q, Dong X, Pei X K, Yue Y F, Lu X P 2017Transactions of China Electrotechnical Society 32 82(吴淑群, 董熙, 裴学凯, 岳远富, 卢新培2017 电工技术学报 32 82)

    [44]

    Nakagawa Y, Ono R, Oda T 2011 J. Appl. Phys. 110 073304

    [45]

    Verreycken T, van der Horst R M, Baede A H F M, Van Veldhuizen E M, Bruggeman P J 2012 J. Phys. D Appl. Phys. 45 045205

    [46]

    Vermeylen S, Waele J D, Vanuytsel S, Backer J D, Van de Paal J, Ramakers M, Leyssens K, Marcq E, Van Audenaerde J, Smiths E L J, Dewilde S, Bogaerts A 2016Plasma Processer and Polymers 13 1195

    [47]

    Kim S J, Seong M J, Mun J J, Bae J H, Joh H M, Chung T H 2022Int. J. Mol. Sci. 23 14092

    [48]

    Geboers B, Scheffer H J, Graybill P M, Ruarus A H, Nieuwenhuizen S, Puijk R S, van den Tol P M, Davalos R V, Rubinsky B, de Gruijl T D, Miklavcic D, Meijerink M R 2020 Radiology 295 254

    [49]

    Jiang C L, Davalos R V, Bischof J C 2015 IEEE T. Biomed. Eng. 62 4

  • [1] 邢人芳, 陈明, 李芮羽, 李淑倩, 张瑞, 胡笑钏. 冷大气压等离子体诱导的交变电场对白细胞介素-6结构及功能的影响.  , doi: 10.7498/aps.73.20240927
    [2] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失.  , doi: 10.7498/aps.70.20210503
    [3] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究.  , doi: 10.7498/aps.69.20191425
    [4] 尹跃洪, 徐红萍. 电场诱导(MgO)4储氢的理论研究.  , doi: 10.7498/aps.68.20190544
    [5] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数.  , doi: 10.7498/aps.65.066401
    [6] 刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰. 杂质离子对有机共轭聚合物中极化子动力学性质的影响.  , doi: 10.7498/aps.65.067202
    [7] 尹跃洪, 陈宏善, 宋燕. 电场诱导(MgO)12储氢的从头计算研究.  , doi: 10.7498/aps.64.193601
    [8] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟.  , doi: 10.7498/aps.63.200508
    [9] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下二氧化锆的分子结构及其特性.  , doi: 10.7498/aps.63.023102
    [10] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟.  , doi: 10.7498/aps.62.245202
    [11] 凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠. 外电场下2,2,5,5-四氯联苯的分子结构与电子光谱.  , doi: 10.7498/aps.62.223102
    [12] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究.  , doi: 10.7498/aps.62.233601
    [13] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究.  , doi: 10.7498/aps.61.177901
    [14] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性.  , doi: 10.7498/aps.61.124301
    [15] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究.  , doi: 10.7498/aps.59.2428
    [16] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算.  , doi: 10.7498/aps.58.684
    [17] 陈敏, 汪俊, 侯氢. 氦对钛的体胀及稳定性影响的分子动力学模拟.  , doi: 10.7498/aps.58.1149
    [18] 阮 文, 罗文浪, 张 莉, 朱正和. 外电场作用下苯乙烯分子结构和电子光谱.  , doi: 10.7498/aps.57.6207
    [19] 邓 闯, 翁渝民, 徐至中, 费 伦. 胶原蛋白分子中电场激发的孤子特性.  , doi: 10.7498/aps.54.2429
    [20] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究.  , doi: 10.7498/aps.53.2497
计量
  • 文章访问数:  87
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-10

/

返回文章
返回
Baidu
map