搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆轰流体力学模型敏感度分析与模型确认

梁霄 王瑞利

引用本文:
Citation:

爆轰流体力学模型敏感度分析与模型确认

梁霄, 王瑞利

Sensitivity analysis and validation of detonation computational fluid dynamics model

Liang Xiao, Wang Rui-Li
PDF
导出引用
  • 验证、确认与不确定度量化(V&V&UQ)是评估物理模型可信度和量化复杂工程数值模拟结果置信度的系统方法.验证是要回答数值模拟程序是否正确求解了物理模型和程序是否正确实施或给出求解模型的误差、不确定性大小及使用范围,确认是要通过数值结果回答物理模型是否反映了真实客观世界或反映真实客观世界的可信程度.文章围绕爆轰流体力学模型,剖析了模型中不确定性因素,给出了影响模拟结果不确定性的关键因素清单,并对其开展了敏感度分析,确认了模型的适应性.
    Verification, validation and uncertainty quantification (V&V&UQ) is a method of assessing the credibility of physical model and quantifying the confidence level of numerical simulation result in complex engineering. Verification is used to answer the question whether the physical model is well solved or the program is implemented correctly, and it will give the ranges of error and uncertainty. Validation is used to answer the question whether the physical model reflects the real world or the confidence level of the physical model. This article deals with the detonation computational fluid dynamics model, and analyses the uncertainty factor in modeling, then presents the key factor which affects the accuracy of the simulation result. Due to the complexity of the explosive detonation phenomenon, there are a huge number of uncertainty factors in the detonation modeling. The sensitivity analyses of these uncertainty factors are utilized to distinguish the main factors which influence the output of the system. Then uncertainty quantification is conducted in these uncertain factors. After comparing the simulation result with the experiment data, the adaptation of the model is validated. This procedure is applied to the cylindrical test with TNT explosive. From the result, we can see that the parameters in the JWL EOS are calibrated and the accuracy of the model is validated. By the way, through conducting the uncertainty quantification of this system, we obtain that the expectation and standard deviation of detonation pressure for TNT are 1.6 and 2.2 GPa respectively. Detonation velocity and position of the cylindrical wall accord well with the experiment data. That means that the model is suited in this case. This technique is also extended to the detonation diffraction phenomenon. We can conclude that simulation result is greatly affected by the scale of the cell. From these examples, we can infer that this method also has a wide application scope.
      通信作者: 王瑞利, wang_ruili@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11372051,91630312,11475029)、中国工程物理研究院科学基金(批准号:2015B2245)、山东省自然科学基金(批准号:ZR2015AQ001)和国防科工局国防基础科研计划(批准号:C1520110002)资助的课题.
      Corresponding author: Wang Rui-Li, wang_ruili@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372051, 91630312, 11475029), the Fund of the China Academy of Engineering Physics (Grant No. 2015B0202045), the Natural Science Foundation of Shandong, China (Grant No. ZR2015AQ001), and the Defense Industrial Technology Development Program, China (Grant No. C1520110002).
    [1]

    Zhang G R, Chen D N 1991 Detonation Dynamics of Agglomerate Detonator (Beijing: National Defense Industry Press) (in Chinese) [张冠人, 陈大年 1991 凝聚炸药起爆动力学 (北京: 国防工业出版社)]

    [2]

    Sun J S 1995 Adv. Mech. 25 127 (in Chinese) [孙锦山 1995 力学进展 25 127]

    [3]

    Wang R L, Jiang S 2015 Sci. Sin.: Math. 45 723 (in Chinese) [王瑞利, 江松 2015 中国科学 数学 45 723]

    [4]

    Wang C, Shu C W 2015 Chin. Sci. Bull. 60 882 (in Chinese) [王成, Shu Chi-Wang 2015 科学通报 60 882]

    [5]

    Oberkampf W L, Roy C L 2010 Verification and Validation in Scientific Computing (New York: Cambridge University Press) p229

    [6]

    Liang X, Wang R L 2016 Expl. Shock Waves 36 509 (in Chinese) [梁霄, 王瑞利 2016 爆炸与冲击 36 509]

    [7]

    Wang R L, Liang X, Lin W Z, Liu X Z, Yu Y L 2016 Defect & Diffusion Forum 366 40

    [8]

    Wang R L, Zhang S D, Liu Q 2014 AIP Conf. Proc. 1648

    [9]

    Wang R L, Liu Q, Wen W Z 2015 Expl. Shock Waves 35 9 (in Chinese) [王瑞利, 刘全, 温万治 2015 爆炸与冲击 35 9]

    [10]

    Tang T, Zhou T 2015 Sci. Sin.: Math. 45 891 (in Chinese) [汤涛, 周涛 2015 中国科学 数学 45 891]

    [11]

    Wang R L, Lin Z, Wei L, Liu X Z 2015 Chin. J. High Pressure Phys. 29 286 (in Chinese) [王瑞利, 林忠, 魏兰, 刘学哲 2015 高压 29 286]

    [12]

    Wang R L, Lin Z, Wen W Z 2014 Comput. Aided Engin. 23 1 (in Chinese) [王瑞利, 林忠, 温万治 2014 计算机辅助工程 23 1]

    [13]

    Liang X, Wang R L 2016 Chin. J. High Pressure Phys. 30 223 (in Chinese) [梁霄, 王瑞利 2016 高压 30 223]

    [14]

    Ng H, Ju Y, Lee J 2007 Int. J. Hydrogen Energy 32 93

    [15]

    Romick C, Aslam T, Powers J 2015 J. Fluid Mech. 769 154

    [16]

    Bdzil J, Stewart D 2007 Anna. Rev. Fluid Mech. 39 263

    [17]

    Wang Y J, Zhang S D, Li H, Zhou H B 2016 Acta Phys. Sin. 65 106401 (in Chinese) [王言金, 张树道, 李华, 周海兵 2016 65 106401]

    [18]

    Zhou H Q, Yu M, Sun H Q, Dong H F, Zhang F G 2014 Acta Phys. Sin. 63 224702 (in Chinese) [周洪强, 于明, 孙海权, 董贺飞, 张凤国 2014 63 224702]

    [19]

    Song H, Tian M, Liu H, Song H, Zhang G 2014 Chin. Phys. Lett. 31 016402

    [20]

    Zhou Z, Nie J, Guo X, Wang Q 2015 Chin. Phys. Lett. 32 016401

    [21]

    Chang Z, Meng X, Lu X 2016 Physica A 472 103

  • [1]

    Zhang G R, Chen D N 1991 Detonation Dynamics of Agglomerate Detonator (Beijing: National Defense Industry Press) (in Chinese) [张冠人, 陈大年 1991 凝聚炸药起爆动力学 (北京: 国防工业出版社)]

    [2]

    Sun J S 1995 Adv. Mech. 25 127 (in Chinese) [孙锦山 1995 力学进展 25 127]

    [3]

    Wang R L, Jiang S 2015 Sci. Sin.: Math. 45 723 (in Chinese) [王瑞利, 江松 2015 中国科学 数学 45 723]

    [4]

    Wang C, Shu C W 2015 Chin. Sci. Bull. 60 882 (in Chinese) [王成, Shu Chi-Wang 2015 科学通报 60 882]

    [5]

    Oberkampf W L, Roy C L 2010 Verification and Validation in Scientific Computing (New York: Cambridge University Press) p229

    [6]

    Liang X, Wang R L 2016 Expl. Shock Waves 36 509 (in Chinese) [梁霄, 王瑞利 2016 爆炸与冲击 36 509]

    [7]

    Wang R L, Liang X, Lin W Z, Liu X Z, Yu Y L 2016 Defect & Diffusion Forum 366 40

    [8]

    Wang R L, Zhang S D, Liu Q 2014 AIP Conf. Proc. 1648

    [9]

    Wang R L, Liu Q, Wen W Z 2015 Expl. Shock Waves 35 9 (in Chinese) [王瑞利, 刘全, 温万治 2015 爆炸与冲击 35 9]

    [10]

    Tang T, Zhou T 2015 Sci. Sin.: Math. 45 891 (in Chinese) [汤涛, 周涛 2015 中国科学 数学 45 891]

    [11]

    Wang R L, Lin Z, Wei L, Liu X Z 2015 Chin. J. High Pressure Phys. 29 286 (in Chinese) [王瑞利, 林忠, 魏兰, 刘学哲 2015 高压 29 286]

    [12]

    Wang R L, Lin Z, Wen W Z 2014 Comput. Aided Engin. 23 1 (in Chinese) [王瑞利, 林忠, 温万治 2014 计算机辅助工程 23 1]

    [13]

    Liang X, Wang R L 2016 Chin. J. High Pressure Phys. 30 223 (in Chinese) [梁霄, 王瑞利 2016 高压 30 223]

    [14]

    Ng H, Ju Y, Lee J 2007 Int. J. Hydrogen Energy 32 93

    [15]

    Romick C, Aslam T, Powers J 2015 J. Fluid Mech. 769 154

    [16]

    Bdzil J, Stewart D 2007 Anna. Rev. Fluid Mech. 39 263

    [17]

    Wang Y J, Zhang S D, Li H, Zhou H B 2016 Acta Phys. Sin. 65 106401 (in Chinese) [王言金, 张树道, 李华, 周海兵 2016 65 106401]

    [18]

    Zhou H Q, Yu M, Sun H Q, Dong H F, Zhang F G 2014 Acta Phys. Sin. 63 224702 (in Chinese) [周洪强, 于明, 孙海权, 董贺飞, 张凤国 2014 63 224702]

    [19]

    Song H, Tian M, Liu H, Song H, Zhang G 2014 Chin. Phys. Lett. 31 016402

    [20]

    Zhou Z, Nie J, Guo X, Wang Q 2015 Chin. Phys. Lett. 32 016401

    [21]

    Chang Z, Meng X, Lu X 2016 Physica A 472 103

  • [1] 浦实, 黄旭光. 相对论自旋流体力学.  , 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [2] 庄杰, 韩瑞, 季振宇, 石富坤. 量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性.  , 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [3] 李诗尧, 于明. 固体炸药爆轰的一种考虑热学非平衡的反应流动模型.  , 2018, 67(21): 214704. doi: 10.7498/aps.67.20172501
    [4] 高当丽, 李蓝星, 冯小娟, 种波, 辛红, 赵瑾, 张翔宇. Yb浓度对功率依赖的上转换荧光色彩的敏感度调控.  , 2018, 67(22): 223201. doi: 10.7498/aps.67.20181167
    [5] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型.  , 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [6] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化.  , 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [7] 王言金, 张树道, 李华, 周海兵. 炸药爆轰产物Jones-Wilkins-Lee状态方程不确定参数.  , 2016, 65(10): 106401. doi: 10.7498/aps.65.106401
    [8] 左冬冬, 侯威, 王文祥. 中国西南地区干旱Copula函数模型对样本量的敏感性分析.  , 2015, 64(10): 100203. doi: 10.7498/aps.64.100203
    [9] 周洪强, 于明, 孙海权, 董贺飞, 张凤国. 炸药爆轰的连续介质本构模型和数值计算方法.  , 2014, 63(22): 224702. doi: 10.7498/aps.63.224702
    [10] 曾喆昭, 雷妮, 盛立锃. 不确定混沌系统的多项式函数模型补偿控制.  , 2013, 62(15): 150506. doi: 10.7498/aps.62.150506
    [11] 尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏. 透射光栅谱仪测谱不确定度分析.  , 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [12] 刘宗伟, 孙超, 杜金燕. 不确定海洋声场中的检测性能损失环境敏感度度量.  , 2013, 62(6): 064303. doi: 10.7498/aps.62.064303
    [13] 张蔚泓, 牛中明, 王枫, 龚孝波, 孙保华. 宇宙核时钟不确定度的研究.  , 2012, 61(11): 112601. doi: 10.7498/aps.61.112601
    [14] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究.  , 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [15] 温坚, 田欢欢, 薛郁. 考虑次近邻作用的行人交通格子流体力学模型.  , 2010, 59(6): 3817-3823. doi: 10.7498/aps.59.3817
    [16] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学.  , 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [17] 庞海龙, 李英骏, 鲁 欣, 张 杰. 基于高斯型脉冲驱动的类镍瞬态X射线激光的流体力学模型.  , 2006, 55(12): 6382-6386. doi: 10.7498/aps.55.6382
    [18] 窦春霞, 张淑清. 基于观测器的模型不确定的耦合时空混沌H∞跟踪控制.  , 2004, 53(12): 4120-4125. doi: 10.7498/aps.53.4120
    [19] 刘慕仁, 孔令江, 江峰. Frish-Hasslecher-Pomeau流体力学模型的平均自由程.  , 1991, 40(11): 1736-1740. doi: 10.7498/aps.40.1736
    [20] 李富斌. 由微观随机动力学导出非平衡稳定态的长程相关性(Ⅰ)——用随机点阵气模型构造出宏观涨落流体力学理论.  , 1990, 39(3): 381-390. doi: 10.7498/aps.39.381
计量
  • 文章访问数:  6634
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-14
  • 修回日期:  2017-03-13
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map