-
Verification, validation and uncertainty quantification (V&V&UQ) is a method of assessing the credibility of physical model and quantifying the confidence level of numerical simulation result in complex engineering. Verification is used to answer the question whether the physical model is well solved or the program is implemented correctly, and it will give the ranges of error and uncertainty. Validation is used to answer the question whether the physical model reflects the real world or the confidence level of the physical model. This article deals with the detonation computational fluid dynamics model, and analyses the uncertainty factor in modeling, then presents the key factor which affects the accuracy of the simulation result. Due to the complexity of the explosive detonation phenomenon, there are a huge number of uncertainty factors in the detonation modeling. The sensitivity analyses of these uncertainty factors are utilized to distinguish the main factors which influence the output of the system. Then uncertainty quantification is conducted in these uncertain factors. After comparing the simulation result with the experiment data, the adaptation of the model is validated. This procedure is applied to the cylindrical test with TNT explosive. From the result, we can see that the parameters in the JWL EOS are calibrated and the accuracy of the model is validated. By the way, through conducting the uncertainty quantification of this system, we obtain that the expectation and standard deviation of detonation pressure for TNT are 1.6 and 2.2 GPa respectively. Detonation velocity and position of the cylindrical wall accord well with the experiment data. That means that the model is suited in this case. This technique is also extended to the detonation diffraction phenomenon. We can conclude that simulation result is greatly affected by the scale of the cell. From these examples, we can infer that this method also has a wide application scope.
-
Keywords:
- detonation computational fluid dynamics model /
- uncertainty quantification /
- sensitivity analysis /
- model validation
[1] Zhang G R, Chen D N 1991 Detonation Dynamics of Agglomerate Detonator (Beijing: National Defense Industry Press) (in Chinese) [张冠人, 陈大年 1991 凝聚炸药起爆动力学 (北京: 国防工业出版社)]
[2] Sun J S 1995 Adv. Mech. 25 127 (in Chinese) [孙锦山 1995 力学进展 25 127]
[3] Wang R L, Jiang S 2015 Sci. Sin.: Math. 45 723 (in Chinese) [王瑞利, 江松 2015 中国科学 数学 45 723]
[4] Wang C, Shu C W 2015 Chin. Sci. Bull. 60 882 (in Chinese) [王成, Shu Chi-Wang 2015 科学通报 60 882]
[5] Oberkampf W L, Roy C L 2010 Verification and Validation in Scientific Computing (New York: Cambridge University Press) p229
[6] Liang X, Wang R L 2016 Expl. Shock Waves 36 509 (in Chinese) [梁霄, 王瑞利 2016 爆炸与冲击 36 509]
[7] Wang R L, Liang X, Lin W Z, Liu X Z, Yu Y L 2016 Defect & Diffusion Forum 366 40
[8] Wang R L, Zhang S D, Liu Q 2014 AIP Conf. Proc. 1648
[9] Wang R L, Liu Q, Wen W Z 2015 Expl. Shock Waves 35 9 (in Chinese) [王瑞利, 刘全, 温万治 2015 爆炸与冲击 35 9]
[10] Tang T, Zhou T 2015 Sci. Sin.: Math. 45 891 (in Chinese) [汤涛, 周涛 2015 中国科学 数学 45 891]
[11] Wang R L, Lin Z, Wei L, Liu X Z 2015 Chin. J. High Pressure Phys. 29 286 (in Chinese) [王瑞利, 林忠, 魏兰, 刘学哲 2015 高压 29 286]
[12] Wang R L, Lin Z, Wen W Z 2014 Comput. Aided Engin. 23 1 (in Chinese) [王瑞利, 林忠, 温万治 2014 计算机辅助工程 23 1]
[13] Liang X, Wang R L 2016 Chin. J. High Pressure Phys. 30 223 (in Chinese) [梁霄, 王瑞利 2016 高压 30 223]
[14] Ng H, Ju Y, Lee J 2007 Int. J. Hydrogen Energy 32 93
[15] Romick C, Aslam T, Powers J 2015 J. Fluid Mech. 769 154
[16] Bdzil J, Stewart D 2007 Anna. Rev. Fluid Mech. 39 263
[17] Wang Y J, Zhang S D, Li H, Zhou H B 2016 Acta Phys. Sin. 65 106401 (in Chinese) [王言金, 张树道, 李华, 周海兵 2016 65 106401]
[18] Zhou H Q, Yu M, Sun H Q, Dong H F, Zhang F G 2014 Acta Phys. Sin. 63 224702 (in Chinese) [周洪强, 于明, 孙海权, 董贺飞, 张凤国 2014 63 224702]
[19] Song H, Tian M, Liu H, Song H, Zhang G 2014 Chin. Phys. Lett. 31 016402
[20] Zhou Z, Nie J, Guo X, Wang Q 2015 Chin. Phys. Lett. 32 016401
[21] Chang Z, Meng X, Lu X 2016 Physica A 472 103
-
[1] Zhang G R, Chen D N 1991 Detonation Dynamics of Agglomerate Detonator (Beijing: National Defense Industry Press) (in Chinese) [张冠人, 陈大年 1991 凝聚炸药起爆动力学 (北京: 国防工业出版社)]
[2] Sun J S 1995 Adv. Mech. 25 127 (in Chinese) [孙锦山 1995 力学进展 25 127]
[3] Wang R L, Jiang S 2015 Sci. Sin.: Math. 45 723 (in Chinese) [王瑞利, 江松 2015 中国科学 数学 45 723]
[4] Wang C, Shu C W 2015 Chin. Sci. Bull. 60 882 (in Chinese) [王成, Shu Chi-Wang 2015 科学通报 60 882]
[5] Oberkampf W L, Roy C L 2010 Verification and Validation in Scientific Computing (New York: Cambridge University Press) p229
[6] Liang X, Wang R L 2016 Expl. Shock Waves 36 509 (in Chinese) [梁霄, 王瑞利 2016 爆炸与冲击 36 509]
[7] Wang R L, Liang X, Lin W Z, Liu X Z, Yu Y L 2016 Defect & Diffusion Forum 366 40
[8] Wang R L, Zhang S D, Liu Q 2014 AIP Conf. Proc. 1648
[9] Wang R L, Liu Q, Wen W Z 2015 Expl. Shock Waves 35 9 (in Chinese) [王瑞利, 刘全, 温万治 2015 爆炸与冲击 35 9]
[10] Tang T, Zhou T 2015 Sci. Sin.: Math. 45 891 (in Chinese) [汤涛, 周涛 2015 中国科学 数学 45 891]
[11] Wang R L, Lin Z, Wei L, Liu X Z 2015 Chin. J. High Pressure Phys. 29 286 (in Chinese) [王瑞利, 林忠, 魏兰, 刘学哲 2015 高压 29 286]
[12] Wang R L, Lin Z, Wen W Z 2014 Comput. Aided Engin. 23 1 (in Chinese) [王瑞利, 林忠, 温万治 2014 计算机辅助工程 23 1]
[13] Liang X, Wang R L 2016 Chin. J. High Pressure Phys. 30 223 (in Chinese) [梁霄, 王瑞利 2016 高压 30 223]
[14] Ng H, Ju Y, Lee J 2007 Int. J. Hydrogen Energy 32 93
[15] Romick C, Aslam T, Powers J 2015 J. Fluid Mech. 769 154
[16] Bdzil J, Stewart D 2007 Anna. Rev. Fluid Mech. 39 263
[17] Wang Y J, Zhang S D, Li H, Zhou H B 2016 Acta Phys. Sin. 65 106401 (in Chinese) [王言金, 张树道, 李华, 周海兵 2016 65 106401]
[18] Zhou H Q, Yu M, Sun H Q, Dong H F, Zhang F G 2014 Acta Phys. Sin. 63 224702 (in Chinese) [周洪强, 于明, 孙海权, 董贺飞, 张凤国 2014 63 224702]
[19] Song H, Tian M, Liu H, Song H, Zhang G 2014 Chin. Phys. Lett. 31 016402
[20] Zhou Z, Nie J, Guo X, Wang Q 2015 Chin. Phys. Lett. 32 016401
[21] Chang Z, Meng X, Lu X 2016 Physica A 472 103
计量
- 文章访问数: 6634
- PDF下载量: 269
- 被引次数: 0