搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水电导率对水下微秒脉冲流光放电形态的影响

李霄 温小琼 杨元天

引用本文:
Citation:

水电导率对水下微秒脉冲流光放电形态的影响

李霄, 温小琼, 杨元天

Effect of water conductivity on underwater microsecond pulsed streamer discharge type

LI Xiao, WEN Xiaoqiong, YANG Yuantian
PDF
HTML
导出引用
  • 水下流光放电在降解水中有机污染物、改良农作物种子等方面有良好的应用前景, 其放电形态对实际应用效果有重要影响. 本文利用四分幅超高速相机观测了不同水电导率、外加电压条件下水下微秒脉冲流光放电过程, 发现在高水电导率条件下存在两种不同的放电形态: 扇形丝丛和单根长丝. 在本文研究范围内水电导率800 µS/cm是两种形态出现率的分界点: 水电导率小于800 µS/cm时, 单根长丝形态的出现率为100%; 水电导率大于800 µS/cm时, 随着水电导率的增大, 单根长丝形态的出现率降低, 扇形丝丛形态的出现率增大; 水电导率大于1000 µS/cm后, 主导放电形态为扇形丝丛形态, 随水电导率的增大反转两种放电形态的出现率所需的电压增大. 扇形丝丛流光传播速度~1.7 km/s, 单根长丝流光早期传播速度~25 km/s, 后期传播速度下降至~0.8 km/s, 水电导率和外加电压对两种形态的传播速度没有显著影响. 扇形丝丛形态的放电延迟时间总是比单根长丝形态的大~8%, 单脉冲注入能量比单根长丝形态的小~20%.
    Underwater streamer discharges have various potential applications in the fields of wastewater treatment, crop seed processing, etc. The underwater streamer discharge types have an important effect on e practical applications. In this work, the underwater microsecond pulsed streamer discharges are investigated by using an ultra-high-speed frame camera system at different water conductivities and applied voltages. It is found that there exist two different types of discharge under the same experimental conditions: the fan-shaped bush type and the long-single filament type. The water conductivity of 800 µS/cm marks the boundary point for the occurrence rates of the two discharge types: when the water conductivity is less than 800 µS/cm, the occurrence rate of the long-single filament type is 100%; when the water conductivity is larger than 800 µS/cm, the occurrence rate of the long-single filament type decreases, but the occurrence rate of the fan-shaped bush type increases with water conductivity increasing. When the water conductivity is larger than 1000 µS/cm, the dominant discharge type is the fan-shaped bush type, and the voltage required to reverse the appearance rates of the two discharge types increases as the water conductivity increases. The fan-shaped bush type streamer has a propagation velocity of ~1.7 km/s, and the long-single filament streamer has a propagation velocity of ~25 km/s in the early stage and a propagation velocity of ~0.8 km/s in the later stage. Neither of water conductivity and applied voltage has significant influence on the propagation velocities of the two types of streamers. The time lag of the fan-shaped bush-type discharge is about 8% larger than that of the long-single filament-type discharge. The injection energy per pulse of the fan-shaped bush-type discharge is about 20% smaller than that of the single filament-type discharge.
  • 图 1  实验装置图

    Fig. 1.  Experimental setup.

    图 2  水电导率1200 µS/cm、电压38 kV条件下单一放电脉冲过程中依次获得的8幅时间演化Hα发光图像, 放电脉冲I和放电脉冲II的相机设定完全相同. (a1)—(d1), (a2)—(d2)为放电早期阶段, 相邻两幅图像的时间间隔为80 ns; (e1)—(h1), (e2)—(h2)为放电后期阶段, 相邻两幅图像的时间间隔为200 ns, 所有图像的相机曝光时间为20 ns

    Fig. 2.  Eight successive Hα emission images acquired during a single pulse discharge at water conductivity of 1200 µS/cm and applied voltage of 38 kV, the camera settings for Pulse I and Pulse II are identical: (a1)–(d1), (a2)–(d2) Correspond to the early stage of the streamer discharge, and the time interval between two adjacent images is 80 ns; (e1)–(h1), (e2)–(h2) correspond to the later stage of the streamer discharge, and the time interval is 200 ns, the gating time of each image is 20 ns.

    图 3  水电导率1000 µS/cm、电压38 kV条件下的单一放电脉冲过程中依次获得的8幅时间演化阴影图像, 放电脉冲I和放电脉冲II的相机设定完全相同 图中相邻两幅图像之间的时间间隔为180 ns, 每幅图像的曝光时间为20 ns

    Fig. 3.  Eight successive shadow images obtained during a single pulse discharge at water conductivity of 1000 µS/cm and applied voltage of 38 kV, the camera time settings for Pulse I and Pulse II are identical: The time interval between two neighboring images in images is 180 ns, and the exposure time for each image is 20 ns.

    图 4  水电导率对两种放电形态出现率的影响

    Fig. 4.  Influence of the water conductivity on the appearance rate of the two discharge types.

    图 5  外加电压对两种放电形态出现率的影响

    Fig. 5.  Influence of the applied voltage on the appearance rate of the two discharge types.

    图 6  扇形丝丛形态流光的传播速度与水电导率、外加电压的关系

    Fig. 6.  The dependence of the propagation velocity of fan-shaped bush type streamer on the water conductivity and the applied voltage.

    图 7  一个放电脉冲下单根长丝形态流光丝长度随时间的变化

    Fig. 7.  Time dependence of the length of long-single filament type streamer during a single discharge pulse.

    图 8  单根长丝形态流光的传播速度 (a)早期传播速度; (b)后期传播速度

    Fig. 8.  Propagation velocity of the long-single filament type streamer: (a) Early stage; (b) later stage.

    图 9  水电导率1200 µS/cm、外加电压30 kV时放电电压、电流波形示例 (a) 扇形丝丛形态放电; (b) 单根长丝形态放电

    Fig. 9.  Waveforms of the discharge voltage and current at 1200 µS/cm and 30 KV: (a) Fan-shaped bush type discharge; (b) long-single filament type discharge.

    图 10  两种放电形态的放电延迟时间与水电导率的关系

    Fig. 10.  The effect of water conductivity on the time lag of the two discharge types.

    图 11  水电导率和外加电压对两种放电形态的单脉冲注入能量的影响

    Fig. 11.  Effect of water conductivity and applied voltage on single pulse injection energy of the two discharge types.

    图 12  流光阴影图像 (a)第一模式放电(220 µS/cm, 19 kV); (b) 本研究观测到的扇形丝丛形态(1000 µS/cm, 38 kV)

    Fig. 12.  Shadow images of streamer: (a) The primary streamer (220 µS/cm, 19 kV); (b) the fan-shaped bush type streamer (1000 µS/cm, 38 kV).

    Baidu
  • [1]

    Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882Google Scholar

    [2]

    Kolb J F, Joshi R P, Xiao S, Schoenbach K H 2008 J. Phys. D: Appl. Phys. 41 234007Google Scholar

    [3]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001Google Scholar

    [4]

    Sato M, Ohgiyama T, Clements J S 1996 IEEE. Trans. Ind. Appl. 32 106Google Scholar

    [5]

    Lukes P, Clupek M, Babicky V, Sunka P 2008 Plasma Sources Sci. Technol. 17 024012Google Scholar

    [6]

    Akiyama H 2000 IEEE Trans. Dielectr. Electr. Insul. 7 646Google Scholar

    [7]

    Titova Y V, Stokozenko V G, Maximov A I 2010 IEEE Trans. Plasma Sci. 38 933Google Scholar

    [8]

    Sharma A K, Locke B R, Arce P, Finney W C 1993 Hazard. Waste Hazard. Mater. 10 209Google Scholar

    [9]

    Sun B, Sato M, Clements J S 1999 J. Phys. D: Appl. Phys. 32 1908Google Scholar

    [10]

    Wang H J, Li J, Quan X 2006 J. Electrostat. 64 416Google Scholar

    [11]

    Wang D Y, Lin X F, Hirayama K, Li Z, Ohno T, Zhang W B, Namihira T, Katsuki S, Takano H, Takio S, Akiyama H 2010 IEEE Trans. Plasma Sci. 38 39Google Scholar

    [12]

    Sivachandiran L, Khacef A 2017 RSC Adv. 7 1822Google Scholar

    [13]

    An W, Baumung K, Bluhm H 2007 J. Appl. Phys. 101 053302Google Scholar

    [14]

    Ceccato P, Guaitella O, Shaper L, Graham B, Rousseau A 2009 IEEE Pulsed Power Conference Washington. D C, USA, June 28-July 2, 2009 p866

    [15]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Sato T 2013 J. Appl. Phys. 113 113304Google Scholar

    [16]

    Lesaint O 2016 J. Phys. D: Appl. Phys. 49 144001Google Scholar

    [17]

    Li J S, Wen X Q, Liu X H, Zhou Y B 2019 IEEE Trans. Plasma Sci. 47 1514Google Scholar

    [18]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014 J. Appl. Phys. 116 213301Google Scholar

    [19]

    Katsuki S, Tanaka K, Fudamoto T, Namihira T, Akiyama H, Bluhm H 2006 Jpn. J. Appl. Phys. 45 239Google Scholar

    [20]

    Wen X Q, Xue X D, Liu X H, Li J S, Zhou Y B 2019 J. Appl. Phys. 125 133302Google Scholar

    [21]

    Katsuki S, Akiyama H, Abou-Ghazala A, Schoenbach K H 2002 IEEE Trans. Dielectr. Electr. Insul. 9 498Google Scholar

    [22]

    Wen X Q, Liu G S, Ding Z F 2012 IEEE Trans. Plasma Sci. 40 438Google Scholar

    [23]

    Zhang H, Zhang Y Y, Zhu L X, Liu Y N 2024 J. Hazard. Mater. 476 135069Google Scholar

    [24]

    Takeuchi N, Ishibashi N, Sugiyama T, Kim H H 2018 Plasma Sources Sci. Technol. 27 055013Google Scholar

    [25]

    Liu S, Kang Y 2024 Environ. Pollut. 348 123891Google Scholar

    [26]

    Jose J, Philip L 2019 J. Environ. Chem. Eng. 7 103476Google Scholar

    [27]

    牛志文, 晏现峰, 李书翰, 温小琼, 刘金远 2015 光谱学与光谱分析 35 2911

    Niu Z W, Yan X F, Li S H, Wen X Q, Liu J Y 2015 Spectroscopy Spectral Analy. 35 2911

    [28]

    Sun B, Sato M, Clements J S 1997 J. Electrostat. 39 189Google Scholar

    [29]

    Šimek M, Člupek M, Babický V, Lukeš P, Šunka P 2012 Plasma Sources Sci. Technol. 21 055031Google Scholar

    [30]

    Marinov I, Starikovskaia S, Rousseau A 2014 J. Phys. D: Appl. Phys. 47 224017Google Scholar

    [31]

    Salazar J N, Bonifaci N, Denat A, Lesaint O 2005 IEEE International Conference on Dielectric Liquids Coimbra, Portugal, June 26-July 1, 2005 p91

    [32]

    Ceccato P H, Guaitella O, Gloahec Le M R, Rousseau A 2010 J. Phys. D: Appl. Phys. 43 175202Google Scholar

    [33]

    Marinov I, Guaitella O, Rousseau A, Starikovskaia S M 2013 J. Phys. D: Appl. Phys. 46 464013Google Scholar

    [34]

    王雪, 温小琼, 王丽茹, 杨元天, 薛晓东 2022 71 015203Google Scholar

    Wang X, Wen X Q, Wang L R, Yang Y T, Xue X D 2022 Acta Phys. Sin. 71 015203Google Scholar

    [35]

    Wang L R, Wen X Q, Yang Y T, Wang X 2023 J. Appl. Phys. 134 013302Google Scholar

    [36]

    杨双越, 温小琼, 杨元天, 李霄 2024 73 075203Google Scholar

    Yang S Y, Wen X Q, Yang Y T, Li X 2024 Acta Phys. Sin. 73 075203Google Scholar

  • [1] 杨双越, 温小琼, 杨元天, 李霄. 水下多针电极微秒脉冲流光放电特性.  , doi: 10.7498/aps.73.20231881
    [2] 庄杰, 韩瑞, 季振宇, 石富坤. 量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性.  , doi: 10.7498/aps.72.20230203
    [3] 朱佳雪, 张续猛, 王睿, 刘琦. 面向神经形态感知和计算的柔性忆阻器基脉冲神经元.  , doi: 10.7498/aps.71.20212323
    [4] 王雪, 温小琼, 王丽茹, 杨元天, 薛晓东. 水中流光放电流光丝的再发光和暂停行为.  , doi: 10.7498/aps.71.20211162
    [5] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算.  , doi: 10.7498/aps.65.065201
    [6] 牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛. 气流对微秒脉冲滑动放电特性的影响.  , doi: 10.7498/aps.64.195204
    [7] 高韶华, 王玉霞, 王宏伟, 袁帅. KAg4I5-AgI复合体系的电导率研究.  , doi: 10.7498/aps.60.086601
    [8] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , doi: 10.7498/aps.60.037102
    [9] 罗 涛, 朱 伟, 石勤伟, 王晓平. 准粒子谱函数对单层石墨片最小电导率的影响.  , doi: 10.7498/aps.57.3775
    [10] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法.  , doi: 10.7498/aps.57.1123
    [11] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究.  , doi: 10.7498/aps.56.6642
    [12] 邱圣德, 胡承正, 王爱军, 周 详. 十次对称准晶的光电导率.  , doi: 10.7498/aps.55.743
    [13] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响.  , doi: 10.7498/aps.55.5318
    [14] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演.  , doi: 10.7498/aps.54.648
    [15] 郭洪霞, 麦振洪. 电导率对电流变效应的影响.  , doi: 10.7498/aps.45.65
    [16] 蒋祺, 龚昌德. 等能谷间杂质散射对无序层状系统电导率的影响.  , doi: 10.7498/aps.38.600
    [17] 蒋祺, 龚昌德. 无序层状系统电导率的自洽研究.  , doi: 10.7498/aps.38.593
    [18] 蒋祺, 龚昌德. 无序层状系统的电导率.  , doi: 10.7498/aps.37.941
    [19] 陈立泉, 柳俊, 王超英, 何元康, 陈竹生, 刘永平. 影响聚合物离子导体电导率的一些因素.  , doi: 10.7498/aps.36.60
    [20] 张昭庆. 液态金属及非晶态中的电导率——相干势近似.  , doi: 10.7498/aps.31.294
计量
  • 文章访问数:  388
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-26
  • 修回日期:  2024-12-25
  • 上网日期:  2025-01-08

/

返回文章
返回
Baidu
map