-
水下流光放电在降解水中有机污染物、改良农作物种子等方面有良好的应用前景, 其放电形态对实际应用效果有重要影响. 本文利用四分幅超高速相机观测了不同水电导率、外加电压条件下水下微秒脉冲流光放电过程, 发现在高水电导率条件下存在两种不同的放电形态: 扇形丝丛和单根长丝. 在本文研究范围内水电导率800 µS/cm是两种形态出现率的分界点: 水电导率小于800 µS/cm时, 单根长丝形态的出现率为100%; 水电导率大于800 µS/cm时, 随着水电导率的增大, 单根长丝形态的出现率降低, 扇形丝丛形态的出现率增大; 水电导率大于1000 µS/cm后, 主导放电形态为扇形丝丛形态, 随水电导率的增大反转两种放电形态的出现率所需的电压增大. 扇形丝丛流光传播速度~1.7 km/s, 单根长丝流光早期传播速度~25 km/s, 后期传播速度下降至~0.8 km/s, 水电导率和外加电压对两种形态的传播速度没有显著影响. 扇形丝丛形态的放电延迟时间总是比单根长丝形态的大~8%, 单脉冲注入能量比单根长丝形态的小~20%.
-
关键词:
- 水下微秒脉冲流光放电 /
- 水电导率 /
- 扇形丝丛形态 /
- 单根长丝形态
Underwater streamer discharges have various potential applications in the fields of wastewater treatment, crop seed processing, etc. The underwater streamer discharge types have an important effect on e practical applications. In this work, the underwater microsecond pulsed streamer discharges are investigated by using an ultra-high-speed frame camera system at different water conductivities and applied voltages. It is found that there exist two different types of discharge under the same experimental conditions: the fan-shaped bush type and the long-single filament type. The water conductivity of 800 µS/cm marks the boundary point for the occurrence rates of the two discharge types: when the water conductivity is less than 800 µS/cm, the occurrence rate of the long-single filament type is 100%; when the water conductivity is larger than 800 µS/cm, the occurrence rate of the long-single filament type decreases, but the occurrence rate of the fan-shaped bush type increases with water conductivity increasing. When the water conductivity is larger than 1000 µS/cm, the dominant discharge type is the fan-shaped bush type, and the voltage required to reverse the appearance rates of the two discharge types increases as the water conductivity increases. The fan-shaped bush type streamer has a propagation velocity of ~1.7 km/s, and the long-single filament streamer has a propagation velocity of ~25 km/s in the early stage and a propagation velocity of ~0.8 km/s in the later stage. Neither of water conductivity and applied voltage has significant influence on the propagation velocities of the two types of streamers. The time lag of the fan-shaped bush-type discharge is about 8% larger than that of the long-single filament-type discharge. The injection energy per pulse of the fan-shaped bush-type discharge is about 20% smaller than that of the single filament-type discharge.-
Keywords:
- underwater microsecond pulsed streamer discharge /
- water conductivity /
- fan-shaped bush type discharge /
- long-single filament type discharge
-
图 2 水电导率1200 µS/cm、电压38 kV条件下单一放电脉冲过程中依次获得的8幅时间演化Hα发光图像, 放电脉冲I和放电脉冲II的相机设定完全相同. (a1)—(d1), (a2)—(d2)为放电早期阶段, 相邻两幅图像的时间间隔为80 ns; (e1)—(h1), (e2)—(h2)为放电后期阶段, 相邻两幅图像的时间间隔为200 ns, 所有图像的相机曝光时间为20 ns
Fig. 2. Eight successive Hα emission images acquired during a single pulse discharge at water conductivity of 1200 µS/cm and applied voltage of 38 kV, the camera settings for Pulse I and Pulse II are identical: (a1)–(d1), (a2)–(d2) Correspond to the early stage of the streamer discharge, and the time interval between two adjacent images is 80 ns; (e1)–(h1), (e2)–(h2) correspond to the later stage of the streamer discharge, and the time interval is 200 ns, the gating time of each image is 20 ns.
图 3 水电导率1000 µS/cm、电压38 kV条件下的单一放电脉冲过程中依次获得的8幅时间演化阴影图像, 放电脉冲I和放电脉冲II的相机设定完全相同 图中相邻两幅图像之间的时间间隔为180 ns, 每幅图像的曝光时间为20 ns
Fig. 3. Eight successive shadow images obtained during a single pulse discharge at water conductivity of 1000 µS/cm and applied voltage of 38 kV, the camera time settings for Pulse I and Pulse II are identical: The time interval between two neighboring images in images is 180 ns, and the exposure time for each image is 20 ns.
-
[1] Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882
Google Scholar
[2] Kolb J F, Joshi R P, Xiao S, Schoenbach K H 2008 J. Phys. D: Appl. Phys. 41 234007
Google Scholar
[3] Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001
Google Scholar
[4] Sato M, Ohgiyama T, Clements J S 1996 IEEE. Trans. Ind. Appl. 32 106
Google Scholar
[5] Lukes P, Clupek M, Babicky V, Sunka P 2008 Plasma Sources Sci. Technol. 17 024012
Google Scholar
[6] Akiyama H 2000 IEEE Trans. Dielectr. Electr. Insul. 7 646
Google Scholar
[7] Titova Y V, Stokozenko V G, Maximov A I 2010 IEEE Trans. Plasma Sci. 38 933
Google Scholar
[8] Sharma A K, Locke B R, Arce P, Finney W C 1993 Hazard. Waste Hazard. Mater. 10 209
Google Scholar
[9] Sun B, Sato M, Clements J S 1999 J. Phys. D: Appl. Phys. 32 1908
Google Scholar
[10] Wang H J, Li J, Quan X 2006 J. Electrostat. 64 416
Google Scholar
[11] Wang D Y, Lin X F, Hirayama K, Li Z, Ohno T, Zhang W B, Namihira T, Katsuki S, Takano H, Takio S, Akiyama H 2010 IEEE Trans. Plasma Sci. 38 39
Google Scholar
[12] Sivachandiran L, Khacef A 2017 RSC Adv. 7 1822
Google Scholar
[13] An W, Baumung K, Bluhm H 2007 J. Appl. Phys. 101 053302
Google Scholar
[14] Ceccato P, Guaitella O, Shaper L, Graham B, Rousseau A 2009 IEEE Pulsed Power Conference Washington. D C, USA, June 28-July 2, 2009 p866
[15] Fujita H, Kanazawa S, Ohtani K, Komiya A, Sato T 2013 J. Appl. Phys. 113 113304
Google Scholar
[16] Lesaint O 2016 J. Phys. D: Appl. Phys. 49 144001
Google Scholar
[17] Li J S, Wen X Q, Liu X H, Zhou Y B 2019 IEEE Trans. Plasma Sci. 47 1514
Google Scholar
[18] Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014 J. Appl. Phys. 116 213301
Google Scholar
[19] Katsuki S, Tanaka K, Fudamoto T, Namihira T, Akiyama H, Bluhm H 2006 Jpn. J. Appl. Phys. 45 239
Google Scholar
[20] Wen X Q, Xue X D, Liu X H, Li J S, Zhou Y B 2019 J. Appl. Phys. 125 133302
Google Scholar
[21] Katsuki S, Akiyama H, Abou-Ghazala A, Schoenbach K H 2002 IEEE Trans. Dielectr. Electr. Insul. 9 498
Google Scholar
[22] Wen X Q, Liu G S, Ding Z F 2012 IEEE Trans. Plasma Sci. 40 438
Google Scholar
[23] Zhang H, Zhang Y Y, Zhu L X, Liu Y N 2024 J. Hazard. Mater. 476 135069
Google Scholar
[24] Takeuchi N, Ishibashi N, Sugiyama T, Kim H H 2018 Plasma Sources Sci. Technol. 27 055013
Google Scholar
[25] Liu S, Kang Y 2024 Environ. Pollut. 348 123891
Google Scholar
[26] Jose J, Philip L 2019 J. Environ. Chem. Eng. 7 103476
Google Scholar
[27] 牛志文, 晏现峰, 李书翰, 温小琼, 刘金远 2015 光谱学与光谱分析 35 2911
Niu Z W, Yan X F, Li S H, Wen X Q, Liu J Y 2015 Spectroscopy Spectral Analy. 35 2911
[28] Sun B, Sato M, Clements J S 1997 J. Electrostat. 39 189
Google Scholar
[29] Šimek M, Člupek M, Babický V, Lukeš P, Šunka P 2012 Plasma Sources Sci. Technol. 21 055031
Google Scholar
[30] Marinov I, Starikovskaia S, Rousseau A 2014 J. Phys. D: Appl. Phys. 47 224017
Google Scholar
[31] Salazar J N, Bonifaci N, Denat A, Lesaint O 2005 IEEE International Conference on Dielectric Liquids Coimbra, Portugal, June 26-July 1, 2005 p91
[32] Ceccato P H, Guaitella O, Gloahec Le M R, Rousseau A 2010 J. Phys. D: Appl. Phys. 43 175202
Google Scholar
[33] Marinov I, Guaitella O, Rousseau A, Starikovskaia S M 2013 J. Phys. D: Appl. Phys. 46 464013
Google Scholar
[34] 王雪, 温小琼, 王丽茹, 杨元天, 薛晓东 2022 71 015203
Google Scholar
Wang X, Wen X Q, Wang L R, Yang Y T, Xue X D 2022 Acta Phys. Sin. 71 015203
Google Scholar
[35] Wang L R, Wen X Q, Yang Y T, Wang X 2023 J. Appl. Phys. 134 013302
Google Scholar
[36] 杨双越, 温小琼, 杨元天, 李霄 2024 73 075203
Google Scholar
Yang S Y, Wen X Q, Yang Y T, Li X 2024 Acta Phys. Sin. 73 075203
Google Scholar
计量
- 文章访问数: 388
- PDF下载量: 0
- 被引次数: 0