-
基于辐射流体力学程序开展了高功率激光与平面靶相互作用的研究, 当激光与钨平面靶相互作用时, 由于热成丝不稳定性等原因引起激光能量沉积不均匀, 等离子体前沿会出现密度涨落, 后期会产生明显的等离子体成丝现象. 研究发现, 辐射冷却对成丝现象至关重要, 在等离子体的辐射流体动力学演化中, 辐射冷却效应会导致等离子体压强分布不均匀, 影响流体横向运动, 进而加强等离子体密度涨落, 在激光结束后密度涨落逐渐演变成为成丝现象. 通过对铝、铜、钨和金4种材料的研究, 发现高Z材料钨和金中, 由于辐射冷却效应较强, 导致明显的成丝现象. 研究结果将对激光聚变、实验室天体物理及强激光驱动的应用等研究具有借鉴意义.Interaction of high-power laser with planar target is studied by using radiation-hydrodynamics simulation. When the laser interacts with the tungsten planar target, the laser energy deposition is uneven due to thermal filamentation instability and other reasons, and density fluctuations will appear in the front of the plasma, resulting in obvious plasma filamentation in the later stage. The researches of four materials, i.e. aluminum, copper, tungsten and gold, show that in the high-Z material tungsten and gold, due to the strong radiative cooling effect, the filamentation phenomena of the density distribution, electron temperature distribution and pressure distribution obviously occur. The order of magnitude of filamentous plasma density is different from that of the surrounding plasma. The filamentation phenomenon is closely related to the non-uniform energy deposition of the laser and the radiative cooling effect, although the ray beam will cause inhomogeneity of the laser irradiation to a certain extent, this is not the main reason for the filamentation phenomenon observed in this paper. Owing to refraction, reflection and the thermal filamentation instability when the laser is transmitted in the ablation plasma, the laser energy is deposited unevenly, which generates instability seeds in the early stage of plasma formation. The radiative cooling effect then amplifies this instability seeds, creating a radiative cooling instability that eventually results in a filamentous distribution of physical quantities such as plasma density, temperature, and pressure. This filamentation phenomenon destroys the uniformity of the plasma to a certain extent, and lays the seeds for the growth of fluid instability, which will seriously affect fusion-related research. It is shown that radiative cooling is crucial to the filamentation phenomenon, which causes uneven distribution of the plasma pressure during the evolution of the plasma, thereby affecting its transverse motion and enhancing the density fluctuation. After the laser irradiation ends, the density fluctuation gradually develops into filamentations. We also find that the clear filamentation occurs only for high-Z materials like tungsten and gold, but not for the moderate-Z materials like aluminum and copper. This can be attributed to the fact that radiative cooling is stronger for the high-Z materials. Studying the filamentation effect in laser-irradiated planar targets can contribute to understanding the instability in laser plasma, and then suppressing this instability and improving the gain of fusion. The results here can thus be of reference significance to the research of laser fusion, laboratory astrophysics, and other applications of intense-laserdriving.
-
Keywords:
- high power laser /
- plasma /
- radiative cooling /
- filamentation
[1] Basov N G, Krokhin O N 1964 J. Exp. Theor. Phys. 19 123
[2] 王淦昌 1987 中国激光 14 641Google Scholar
Wang G C 1987 Chinese Laser 14 641Google Scholar
[3] Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar
[4] Zhang G, Huang M, Bonasera A, Ma Y G, Shen B F, Wang H W, Wang W P, Xu J C, Fan G T, Fu H J, Xue H, Zheng H, Liu L X, Zhang S, Li W J, Cao X G, Deng X G, Li X Y, Liu Y C, Yu Y, Zhang Y, Fu C B, Zhang X P 2019 Phys. Lett. A 383 2285Google Scholar
[5] Zhao J R, Zhang X P, Yuan D W, Li Y T, Li D Z, Rhee Y J, Zhang Z, Li F, Zhu B J, Li Yan F, Han B, Liu C, Ma Y, Li Yi F, Tao M Z, Li M H, Guo X, Huang X G, Fu S Z, Zhu J Q, Zhao G, Chen L M, Fu C B, Zhang J A 2016 Sci. Rep. 6 27363Google Scholar
[6] Qi W, Zhang X H, Zhang B, He S K, Zhang F, Cui B, Yu M H, Dai Z H, Peng X Y, Gu Y Q 2019 Phys. Plasmas 26 043103Google Scholar
[7] Kasperczuk A, Pisarczyk T, Borodziuk S, Ullschmied J, Krousky E, Masek K, Rohlena K, Skala J, Hora H 2006 Phys. Plasmas 13 062704Google Scholar
[8] 郑无敌, 张国平 2008 计算物理 25 36Google Scholar
Zheng W D, Zhang G P 2008 Computational Physics 25 36Google Scholar
[9] Gao L, Nilson P M, Igumenshchev I V, Haines M G, Froula D H, Betti R, Meyerhofer D D 2015 Phys. Rev. Lett. 114 215003Google Scholar
[10] Gao L, Nilson P M, Igumenshchev I V, Hu S X, Davies J R, Stoeckl C, Haines M G, Froula D H, Betti R, Meyerhofer D D 2012 Phys. Rev. Lett. 109 115001Google Scholar
[11] Giulietti A, Coe S, Afshar-rad T, Desselberger M, Willi O, Danson C, Giulietti D 1991 Laser Interaction and Related Plasma Phenomena 155 261
[12] Watkins H C, Kingham R J 2018 Phys. Plasmas 25 092701Google Scholar
[13] Afsharrad T, Coe S E, Willi O, Desselberger M 1992 Phys. Plasmas 4 051301
[14] 张家泰, 刘松芬, 胡北来 2003 52 1668Google Scholar
Zhang J T, Liu S F, Hu B L 2003 Acta Phys. Sin. 52 1668Google Scholar
[15] 李玉同, 张杰陈, 陈黎明, 赵理曾, 夏江帆, 滕浩, 李英俊, 朱成银, 江文勉 2001 50 204Google Scholar
Li Y T, Zhang J, Chen L M, Zhao L Z, Xia J F, Teng H, Li Y J, Zhu C Y, Jiang W M 2001 Acta Phys. Sin. 50 204Google Scholar
[16] Bret A, Firpo M C, Deutsch C 2005 Phys. Rev. Lett. 94 115002Google Scholar
[17] Séguin F H, Li C K, Manuel M J E, Rinderknecht H G, Sinenian N, Frenie J A, Rygg J R, Hicks D G, Petrasso R D, Delettrez J, Betti R, Marshall F J, Smalyuk V A 2012 Phys. Plasmas 19 012701Google Scholar
[18] Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2013 Phys. Rev. Lett. 111 225002Google Scholar
[19] Manuel M J E, Khiar B, Rigon G, Albertazzi B, Klein S R, Kroll F, Brack F E, Michel T, Mabey P, Pikuz S, Williams J C, Koenig M, Casner A, Kuranz C C 2021 Matter Radiat. Extremes 6 026904
[20] Willi O, Rumsby P T, Hooker C, Raven A, Lin Z Q 1982 Opt. Commun. 41 110Google Scholar
[21] Willi O, Rumsby P T, Sartang S 1981 IEEE J. Quantum Electron. 17 1909Google Scholar
[22] Willi O, Afshar-rad T, Desselberger M, Dunne M, Edwards J, Gizzi L, Khattak F, Riley D, Taylor R, Viana S 1992 Laser Interaction and Related Plasma Phenomena 142 517
[23] Afshar-Rad T, Gizzi L A, Desselberger M, Khattak F, Willi O, Giulietti A 1992 Phys. Rev. Lett. 68 942Google Scholar
[24] Desselberger M, Gizzi L, Barrow V, Edwards J, Khattak F, Viana S, Willi O, Danson C N 1992 Appl. Opt. 31 3759Google Scholar
[25] Desselberger M, Afshar-rad T, Khattak F, Viana S, Willi O 1992 Phys. Rev. Lett. 68 1539Google Scholar
[26] Lu Y, Tzeferacos P, Liang E, Follett R K, Gao L, Birkel A, Froula D H, Fu W, Ji H, Lamb D, Li C K, Sio H, Petrasso R, Wei M S 2019 Phys. Plasmas 26 022902Google Scholar
[27] Flash Center for Computational Science, University of Chicago. http://flash.uchicago.edu [2019-03-29]
[28] More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 103059
[29] Eidmann K 1994 Laser Part. Beams 12 223Google Scholar
[30] 田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 63 125205Google Scholar
Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205Google Scholar
[31] Lin Y, Kessler T J 1996 Opt. Lett. 21 1703Google Scholar
[32] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar
[33] Lefebvre E, Berger R L, Langdon A B, MacGowan B J, Rothenberg J E, Williams E A 1998 Phys. Plasmas 5 2701Google Scholar
[34] Lal A K, Marsh K A, Clayton C E, Joshi C, McKinstrie C J, Li J S, Johnston T W 1997 Phys. Rev. Lett. 78 670Google Scholar
[35] Dhareshwar L J, Naik P A, Sarkar S, Khan M, Chakraborty B 1992 Phys. Fluids B 4 1635Google Scholar
[36] Nicolaï P, Tikhonchuk V T, Kasperczuk A, Pisarczyk T, Borodziuk S, Rohlena K, Ullschmied J 2006 Phys. Plasmas 13 062701Google Scholar
[37] 青波 2017 中国工程物理研究院科技年报 29
Qing B 2017 Annual Report of Science and Technology of China Academy of Engineering Physics 29 (in Chinese)
[38] Nicolaï P, Tikhonchuk V T, Kasperczuk A, Pisarczyk T, Borodzziuk S, Rohlena K, Ullschmied J 2007 Astrophys. Space Sci. 307 87Google Scholar
[39] 阿蔡塞 S 著 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社) 第300页
Atzeni S (translated by Shen B F) 2004 The Physics of Inertial Fusion (Beijing: Science Press) p300 (in Chinese)
[40] Evans R G 1981 J. Phys. D: Appl. Phys. 14 173Google Scholar
-
图 1 激光打靶模型. 其中黄色区域为钨靶, 蓝色区域为氦气, 蓝色中间区域为射线束描述的激光功率分布, 激光由下往上入射到钨靶
Fig. 1. Schematics of the laser-target interaction. The yellow region is the tungsten target, the blue region is the background helium, and the middle region is the distribution of laser power. The laser is incident on the tungsten target from bottom to top.
图 2 L2激光辐照钨靶的能量沉积及密度分布 t = 4 ns (a), t = 5 ns (b) 时密度背景上的能量沉积, 红色表示射线束的能量沉积; (c) t = 7 ns, (d) t = 8 ns时二维密度分布; (e) t = 7 ns , (f) t = 8 ns时Z = 500 μm处密度线分布
Fig. 2. Energy deposition and density distributions of L2 laser irradiating the tungsten target: Energy deposition on the density background at t = 4 ns (a) and 5 ns (b), the red color for the energy deposition of the ray beam; 2D density distribution at t = 7 ns (c) and 8 ns (d); the profile of density at Z = 500 μm along R direction at t = 7 ns (e) and 8 ns (f).
图 3 L2激光辐照钨靶的电子温度分布 t = 7 ns (a)和t = 8 ns (b) 时二维电子温度分布; t = 7 ns (c) 和t = 8 ns (d) 时 Z = 500 μm处电子温度线分布
Fig. 3. Electron temperature distribution for L2 laser irradiating the tungsten target: 2D electron temperature distribution at t = 7 ns (a) and 8 ns (b); (c), (d) profile of electron temperature at Z = 500 μm along the R direction at t = 7 ns (c) and 8 ns (d).
图 4 L2激光辐照钨靶的压强分布 5 ns (a), 7 ns (c)和8 ns (e)时二维压强分布; 5 ns (b), 7 ns (d)和8 ns (f) 时Z = 500 μm处的压强线分布
Fig. 4. Pressure distribution of L2 laser irradiating the tungsten target: 2D pressure distribution at t = 5 ns (a), t = 7 ns (c) and t = 8 ns (e); the profile of pressure at Z = 500 μm along R direction at t = 5 ns (b), t = 7 ns (d) and t = 8 ns (f)
图 5 无辐射下L2激光辐照钨靶的模拟 (a) 4 ns时的密度分布和能量沉积, 红色表示射线束的能量沉积; (b) 7 ns时二维密度分布; (c) 7 ns时Z = 500 μm处密度线分布
Fig. 5. Simulation of L2 laser irradiating the tungsten target without radiation: (a) Energy deposition at 4 ns, the red for the energy deposition of the ray beam; (b) 2D density distribution at 7 ns; (c) the density profile along the R direction at Z = 500 μm and t = 7 ns.
图 6 L2激光辐照钨靶的辐射温度分布 4 ns (a)和5 ns (b)时二维辐射温度分布; 4 ns (c)和5 ns (d)时 Z = 700 μm处辐射温度线分布
Fig. 6. Radiation temperature distribution of L2 laser irradiating the tungsten target: 2D radiation temperature distribution at t = 4 ns (a) and t = 5 ns (b); the profile of radiation temperature at Z = 700 μm along R direction at t = 4 ns (c) and 5 ns (d).
表 1 激光参数
Table 1. Laser parameters.
$ 激光简称 $ ${\text{L}}1$ ${\text{L2}}$ ${\text{L3}}$ $ 能量E/\text{kJ} $ $1.5$ $1.5$ $1.5$ $ 时间t/\text{ns} $ $[0, 0.1, 5, 5.1]$ $[0, 0.1, 5, 5.1]$ $[0, 0.1, 5, 5.1]$ $ 功率P/\text{GW} $ $[0, 300, 300, 0]$ $[0, 300, 300, 0]$ $[0, 300, 300, 0]$ $ 焦斑半径r/\text{μm} $ $200$ $300$ $400$ $光强I/(\text{W}\cdot{\text{cm} }^{-2})$ $2.387 \times {10^{14}}$ $1.061 \times {10^{14}}$ $5.968 \times {10^{13}}$ $ 波长\lambda /\text{μm} $ $1.053$ $1.053$ $1.053$ -
[1] Basov N G, Krokhin O N 1964 J. Exp. Theor. Phys. 19 123
[2] 王淦昌 1987 中国激光 14 641Google Scholar
Wang G C 1987 Chinese Laser 14 641Google Scholar
[3] Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar
[4] Zhang G, Huang M, Bonasera A, Ma Y G, Shen B F, Wang H W, Wang W P, Xu J C, Fan G T, Fu H J, Xue H, Zheng H, Liu L X, Zhang S, Li W J, Cao X G, Deng X G, Li X Y, Liu Y C, Yu Y, Zhang Y, Fu C B, Zhang X P 2019 Phys. Lett. A 383 2285Google Scholar
[5] Zhao J R, Zhang X P, Yuan D W, Li Y T, Li D Z, Rhee Y J, Zhang Z, Li F, Zhu B J, Li Yan F, Han B, Liu C, Ma Y, Li Yi F, Tao M Z, Li M H, Guo X, Huang X G, Fu S Z, Zhu J Q, Zhao G, Chen L M, Fu C B, Zhang J A 2016 Sci. Rep. 6 27363Google Scholar
[6] Qi W, Zhang X H, Zhang B, He S K, Zhang F, Cui B, Yu M H, Dai Z H, Peng X Y, Gu Y Q 2019 Phys. Plasmas 26 043103Google Scholar
[7] Kasperczuk A, Pisarczyk T, Borodziuk S, Ullschmied J, Krousky E, Masek K, Rohlena K, Skala J, Hora H 2006 Phys. Plasmas 13 062704Google Scholar
[8] 郑无敌, 张国平 2008 计算物理 25 36Google Scholar
Zheng W D, Zhang G P 2008 Computational Physics 25 36Google Scholar
[9] Gao L, Nilson P M, Igumenshchev I V, Haines M G, Froula D H, Betti R, Meyerhofer D D 2015 Phys. Rev. Lett. 114 215003Google Scholar
[10] Gao L, Nilson P M, Igumenshchev I V, Hu S X, Davies J R, Stoeckl C, Haines M G, Froula D H, Betti R, Meyerhofer D D 2012 Phys. Rev. Lett. 109 115001Google Scholar
[11] Giulietti A, Coe S, Afshar-rad T, Desselberger M, Willi O, Danson C, Giulietti D 1991 Laser Interaction and Related Plasma Phenomena 155 261
[12] Watkins H C, Kingham R J 2018 Phys. Plasmas 25 092701Google Scholar
[13] Afsharrad T, Coe S E, Willi O, Desselberger M 1992 Phys. Plasmas 4 051301
[14] 张家泰, 刘松芬, 胡北来 2003 52 1668Google Scholar
Zhang J T, Liu S F, Hu B L 2003 Acta Phys. Sin. 52 1668Google Scholar
[15] 李玉同, 张杰陈, 陈黎明, 赵理曾, 夏江帆, 滕浩, 李英俊, 朱成银, 江文勉 2001 50 204Google Scholar
Li Y T, Zhang J, Chen L M, Zhao L Z, Xia J F, Teng H, Li Y J, Zhu C Y, Jiang W M 2001 Acta Phys. Sin. 50 204Google Scholar
[16] Bret A, Firpo M C, Deutsch C 2005 Phys. Rev. Lett. 94 115002Google Scholar
[17] Séguin F H, Li C K, Manuel M J E, Rinderknecht H G, Sinenian N, Frenie J A, Rygg J R, Hicks D G, Petrasso R D, Delettrez J, Betti R, Marshall F J, Smalyuk V A 2012 Phys. Plasmas 19 012701Google Scholar
[18] Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2013 Phys. Rev. Lett. 111 225002Google Scholar
[19] Manuel M J E, Khiar B, Rigon G, Albertazzi B, Klein S R, Kroll F, Brack F E, Michel T, Mabey P, Pikuz S, Williams J C, Koenig M, Casner A, Kuranz C C 2021 Matter Radiat. Extremes 6 026904
[20] Willi O, Rumsby P T, Hooker C, Raven A, Lin Z Q 1982 Opt. Commun. 41 110Google Scholar
[21] Willi O, Rumsby P T, Sartang S 1981 IEEE J. Quantum Electron. 17 1909Google Scholar
[22] Willi O, Afshar-rad T, Desselberger M, Dunne M, Edwards J, Gizzi L, Khattak F, Riley D, Taylor R, Viana S 1992 Laser Interaction and Related Plasma Phenomena 142 517
[23] Afshar-Rad T, Gizzi L A, Desselberger M, Khattak F, Willi O, Giulietti A 1992 Phys. Rev. Lett. 68 942Google Scholar
[24] Desselberger M, Gizzi L, Barrow V, Edwards J, Khattak F, Viana S, Willi O, Danson C N 1992 Appl. Opt. 31 3759Google Scholar
[25] Desselberger M, Afshar-rad T, Khattak F, Viana S, Willi O 1992 Phys. Rev. Lett. 68 1539Google Scholar
[26] Lu Y, Tzeferacos P, Liang E, Follett R K, Gao L, Birkel A, Froula D H, Fu W, Ji H, Lamb D, Li C K, Sio H, Petrasso R, Wei M S 2019 Phys. Plasmas 26 022902Google Scholar
[27] Flash Center for Computational Science, University of Chicago. http://flash.uchicago.edu [2019-03-29]
[28] More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 103059
[29] Eidmann K 1994 Laser Part. Beams 12 223Google Scholar
[30] 田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 63 125205Google Scholar
Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205Google Scholar
[31] Lin Y, Kessler T J 1996 Opt. Lett. 21 1703Google Scholar
[32] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar
[33] Lefebvre E, Berger R L, Langdon A B, MacGowan B J, Rothenberg J E, Williams E A 1998 Phys. Plasmas 5 2701Google Scholar
[34] Lal A K, Marsh K A, Clayton C E, Joshi C, McKinstrie C J, Li J S, Johnston T W 1997 Phys. Rev. Lett. 78 670Google Scholar
[35] Dhareshwar L J, Naik P A, Sarkar S, Khan M, Chakraborty B 1992 Phys. Fluids B 4 1635Google Scholar
[36] Nicolaï P, Tikhonchuk V T, Kasperczuk A, Pisarczyk T, Borodziuk S, Rohlena K, Ullschmied J 2006 Phys. Plasmas 13 062701Google Scholar
[37] 青波 2017 中国工程物理研究院科技年报 29
Qing B 2017 Annual Report of Science and Technology of China Academy of Engineering Physics 29 (in Chinese)
[38] Nicolaï P, Tikhonchuk V T, Kasperczuk A, Pisarczyk T, Borodzziuk S, Rohlena K, Ullschmied J 2007 Astrophys. Space Sci. 307 87Google Scholar
[39] 阿蔡塞 S 著 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社) 第300页
Atzeni S (translated by Shen B F) 2004 The Physics of Inertial Fusion (Beijing: Science Press) p300 (in Chinese)
[40] Evans R G 1981 J. Phys. D: Appl. Phys. 14 173Google Scholar
计量
- 文章访问数: 3524
- PDF下载量: 65
- 被引次数: 0