搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响

赵鑫 杨晓虎 张国博 马燕云 刘彦鹏 郁明阳

引用本文:
Citation:

高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响

赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳

Influence of radiative cooling effect on the plasma filamentations in the interaction of high-power laser with planar targets

Zhao Xin, Yang Xiao-Hu, Zhang Guo-Bo, Ma Yan-Yun, Liu Yan-Peng, Yu Ming-Yang
PDF
HTML
导出引用
  • 基于辐射流体力学程序开展了高功率激光与平面靶相互作用的研究, 当激光与钨平面靶相互作用时, 由于热成丝不稳定性等原因引起激光能量沉积不均匀, 等离子体前沿会出现密度涨落, 后期会产生明显的等离子体成丝现象. 研究发现, 辐射冷却对成丝现象至关重要, 在等离子体的辐射流体动力学演化中, 辐射冷却效应会导致等离子体压强分布不均匀, 影响流体横向运动, 进而加强等离子体密度涨落, 在激光结束后密度涨落逐渐演变成为成丝现象. 通过对铝、铜、钨和金4种材料的研究, 发现高Z材料钨和金中, 由于辐射冷却效应较强, 导致明显的成丝现象. 研究结果将对激光聚变、实验室天体物理及强激光驱动的应用等研究具有借鉴意义.
    Interaction of high-power laser with planar target is studied by using radiation-hydrodynamics simulation. When the laser interacts with the tungsten planar target, the laser energy deposition is uneven due to thermal filamentation instability and other reasons, and density fluctuations will appear in the front of the plasma, resulting in obvious plasma filamentation in the later stage. The researches of four materials, i.e. aluminum, copper, tungsten and gold, show that in the high-Z material tungsten and gold, due to the strong radiative cooling effect, the filamentation phenomena of the density distribution, electron temperature distribution and pressure distribution obviously occur. The order of magnitude of filamentous plasma density is different from that of the surrounding plasma. The filamentation phenomenon is closely related to the non-uniform energy deposition of the laser and the radiative cooling effect, although the ray beam will cause inhomogeneity of the laser irradiation to a certain extent, this is not the main reason for the filamentation phenomenon observed in this paper. Owing to refraction, reflection and the thermal filamentation instability when the laser is transmitted in the ablation plasma, the laser energy is deposited unevenly, which generates instability seeds in the early stage of plasma formation. The radiative cooling effect then amplifies this instability seeds, creating a radiative cooling instability that eventually results in a filamentous distribution of physical quantities such as plasma density, temperature, and pressure. This filamentation phenomenon destroys the uniformity of the plasma to a certain extent, and lays the seeds for the growth of fluid instability, which will seriously affect fusion-related research. It is shown that radiative cooling is crucial to the filamentation phenomenon, which causes uneven distribution of the plasma pressure during the evolution of the plasma, thereby affecting its transverse motion and enhancing the density fluctuation. After the laser irradiation ends, the density fluctuation gradually develops into filamentations. We also find that the clear filamentation occurs only for high-Z materials like tungsten and gold, but not for the moderate-Z materials like aluminum and copper. This can be attributed to the fact that radiative cooling is stronger for the high-Z materials. Studying the filamentation effect in laser-irradiated planar targets can contribute to understanding the instability in laser plasma, and then suppressing this instability and improving the gain of fusion. The results here can thus be of reference significance to the research of laser fusion, laboratory astrophysics, and other applications of intense-laserdriving.
      通信作者: 杨晓虎, xhyang@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175309, 11775305, 11975308, 12005297)、中国科学院战略先导A类专项(批准号: XDA25050200)、激光与物质相互作用国家重点实验室基金(批准号: SKLLIM1908)、湖南省自然科学基金(批准号: CX20190001)和国防科技大学青年创新奖(批准号: 20180104)资助的课题.
      Corresponding author: Yang Xiao-Hu, xhyang@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175309, 11775305, 11975308, 12005297), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25050200), the State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLLIM1908), the Natural Science Foundation of Hunan Province, China (Grant No. CX20190001), and the Financial Support from Fund for NUDT Young Innovator Awards, China (Grant No. 20180104).
    [1]

    Basov N G, Krokhin O N 1964 J. Exp. Theor. Phys. 19 123

    [2]

    王淦昌 1987 中国激光 14 641Google Scholar

    Wang G C 1987 Chinese Laser 14 641Google Scholar

    [3]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [4]

    Zhang G, Huang M, Bonasera A, Ma Y G, Shen B F, Wang H W, Wang W P, Xu J C, Fan G T, Fu H J, Xue H, Zheng H, Liu L X, Zhang S, Li W J, Cao X G, Deng X G, Li X Y, Liu Y C, Yu Y, Zhang Y, Fu C B, Zhang X P 2019 Phys. Lett. A 383 2285Google Scholar

    [5]

    Zhao J R, Zhang X P, Yuan D W, Li Y T, Li D Z, Rhee Y J, Zhang Z, Li F, Zhu B J, Li Yan F, Han B, Liu C, Ma Y, Li Yi F, Tao M Z, Li M H, Guo X, Huang X G, Fu S Z, Zhu J Q, Zhao G, Chen L M, Fu C B, Zhang J A 2016 Sci. Rep. 6 27363Google Scholar

    [6]

    Qi W, Zhang X H, Zhang B, He S K, Zhang F, Cui B, Yu M H, Dai Z H, Peng X Y, Gu Y Q 2019 Phys. Plasmas 26 043103Google Scholar

    [7]

    Kasperczuk A, Pisarczyk T, Borodziuk S, Ullschmied J, Krousky E, Masek K, Rohlena K, Skala J, Hora H 2006 Phys. Plasmas 13 062704Google Scholar

    [8]

    郑无敌, 张国平 2008 计算物理 25 36Google Scholar

    Zheng W D, Zhang G P 2008 Computational Physics 25 36Google Scholar

    [9]

    Gao L, Nilson P M, Igumenshchev I V, Haines M G, Froula D H, Betti R, Meyerhofer D D 2015 Phys. Rev. Lett. 114 215003Google Scholar

    [10]

    Gao L, Nilson P M, Igumenshchev I V, Hu S X, Davies J R, Stoeckl C, Haines M G, Froula D H, Betti R, Meyerhofer D D 2012 Phys. Rev. Lett. 109 115001Google Scholar

    [11]

    Giulietti A, Coe S, Afshar-rad T, Desselberger M, Willi O, Danson C, Giulietti D 1991 Laser Interaction and Related Plasma Phenomena 155 261

    [12]

    Watkins H C, Kingham R J 2018 Phys. Plasmas 25 092701Google Scholar

    [13]

    Afsharrad T, Coe S E, Willi O, Desselberger M 1992 Phys. Plasmas 4 051301

    [14]

    张家泰, 刘松芬, 胡北来 2003 52 1668Google Scholar

    Zhang J T, Liu S F, Hu B L 2003 Acta Phys. Sin. 52 1668Google Scholar

    [15]

    李玉同, 张杰陈, 陈黎明, 赵理曾, 夏江帆, 滕浩, 李英俊, 朱成银, 江文勉 2001 50 204Google Scholar

    Li Y T, Zhang J, Chen L M, Zhao L Z, Xia J F, Teng H, Li Y J, Zhu C Y, Jiang W M 2001 Acta Phys. Sin. 50 204Google Scholar

    [16]

    Bret A, Firpo M C, Deutsch C 2005 Phys. Rev. Lett. 94 115002Google Scholar

    [17]

    Séguin F H, Li C K, Manuel M J E, Rinderknecht H G, Sinenian N, Frenie J A, Rygg J R, Hicks D G, Petrasso R D, Delettrez J, Betti R, Marshall F J, Smalyuk V A 2012 Phys. Plasmas 19 012701Google Scholar

    [18]

    Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2013 Phys. Rev. Lett. 111 225002Google Scholar

    [19]

    Manuel M J E, Khiar B, Rigon G, Albertazzi B, Klein S R, Kroll F, Brack F E, Michel T, Mabey P, Pikuz S, Williams J C, Koenig M, Casner A, Kuranz C C 2021 Matter Radiat. Extremes 6 026904

    [20]

    Willi O, Rumsby P T, Hooker C, Raven A, Lin Z Q 1982 Opt. Commun. 41 110Google Scholar

    [21]

    Willi O, Rumsby P T, Sartang S 1981 IEEE J. Quantum Electron. 17 1909Google Scholar

    [22]

    Willi O, Afshar-rad T, Desselberger M, Dunne M, Edwards J, Gizzi L, Khattak F, Riley D, Taylor R, Viana S 1992 Laser Interaction and Related Plasma Phenomena 142 517

    [23]

    Afshar-Rad T, Gizzi L A, Desselberger M, Khattak F, Willi O, Giulietti A 1992 Phys. Rev. Lett. 68 942Google Scholar

    [24]

    Desselberger M, Gizzi L, Barrow V, Edwards J, Khattak F, Viana S, Willi O, Danson C N 1992 Appl. Opt. 31 3759Google Scholar

    [25]

    Desselberger M, Afshar-rad T, Khattak F, Viana S, Willi O 1992 Phys. Rev. Lett. 68 1539Google Scholar

    [26]

    Lu Y, Tzeferacos P, Liang E, Follett R K, Gao L, Birkel A, Froula D H, Fu W, Ji H, Lamb D, Li C K, Sio H, Petrasso R, Wei M S 2019 Phys. Plasmas 26 022902Google Scholar

    [27]

    Flash Center for Computational Science, University of Chicago. http://flash.uchicago.edu [2019-03-29]

    [28]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 103059

    [29]

    Eidmann K 1994 Laser Part. Beams 12 223Google Scholar

    [30]

    田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 63 125205Google Scholar

    Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205Google Scholar

    [31]

    Lin Y, Kessler T J 1996 Opt. Lett. 21 1703Google Scholar

    [32]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar

    [33]

    Lefebvre E, Berger R L, Langdon A B, MacGowan B J, Rothenberg J E, Williams E A 1998 Phys. Plasmas 5 2701Google Scholar

    [34]

    Lal A K, Marsh K A, Clayton C E, Joshi C, McKinstrie C J, Li J S, Johnston T W 1997 Phys. Rev. Lett. 78 670Google Scholar

    [35]

    Dhareshwar L J, Naik P A, Sarkar S, Khan M, Chakraborty B 1992 Phys. Fluids B 4 1635Google Scholar

    [36]

    Nicolaï P, Tikhonchuk V T, Kasperczuk A, Pisarczyk T, Borodziuk S, Rohlena K, Ullschmied J 2006 Phys. Plasmas 13 062701Google Scholar

    [37]

    青波 2017 中国工程物理研究院科技年报 29

    Qing B 2017 Annual Report of Science and Technology of China Academy of Engineering Physics 29 (in Chinese)

    [38]

    Nicolaï P, Tikhonchuk V T, Kasperczuk A, Pisarczyk T, Borodzziuk S, Rohlena K, Ullschmied J 2007 Astrophys. Space Sci. 307 87Google Scholar

    [39]

    阿蔡塞 S 著 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社) 第300页

    Atzeni S (translated by Shen B F) 2004 The Physics of Inertial Fusion (Beijing: Science Press) p300 (in Chinese)

    [40]

    Evans R G 1981 J. Phys. D: Appl. Phys. 14 173Google Scholar

  • 图 1  激光打靶模型. 其中黄色区域为钨靶, 蓝色区域为氦气, 蓝色中间区域为射线束描述的激光功率分布, 激光由下往上入射到钨靶

    Fig. 1.  Schematics of the laser-target interaction. The yellow region is the tungsten target, the blue region is the background helium, and the middle region is the distribution of laser power. The laser is incident on the tungsten target from bottom to top.

    图 2  L2激光辐照钨靶的能量沉积及密度分布 t = 4 ns (a), t = 5 ns (b) 时密度背景上的能量沉积, 红色表示射线束的能量沉积; (c) t = 7 ns, (d) t = 8 ns时二维密度分布; (e) t = 7 ns , (f) t = 8 ns时Z = 500 μm处密度线分布

    Fig. 2.  Energy deposition and density distributions of L2 laser irradiating the tungsten target: Energy deposition on the density background at t = 4 ns (a) and 5 ns (b), the red color for the energy deposition of the ray beam; 2D density distribution at t = 7 ns (c) and 8 ns (d); the profile of density at Z = 500 μm along R direction at t = 7 ns (e) and 8 ns (f).

    图 3  L2激光辐照钨靶的电子温度分布 t = 7 ns (a)和t = 8 ns (b) 时二维电子温度分布; t = 7 ns (c) 和t = 8 ns (d) 时 Z = 500 μm处电子温度线分布

    Fig. 3.  Electron temperature distribution for L2 laser irradiating the tungsten target: 2D electron temperature distribution at t = 7 ns (a) and 8 ns (b); (c), (d) profile of electron temperature at Z = 500 μm along the R direction at t = 7 ns (c) and 8 ns (d).

    图 4  L2激光辐照钨靶的压强分布 5 ns (a), 7 ns (c)和8 ns (e)时二维压强分布; 5 ns (b), 7 ns (d)和8 ns (f) 时Z = 500 μm处的压强线分布

    Fig. 4.  Pressure distribution of L2 laser irradiating the tungsten target: 2D pressure distribution at t = 5 ns (a), t = 7 ns (c) and t = 8 ns (e); the profile of pressure at Z = 500 μm along R direction at t = 5 ns (b), t = 7 ns (d) and t = 8 ns (f)

    图 5  无辐射下L2激光辐照钨靶的模拟 (a) 4 ns时的密度分布和能量沉积, 红色表示射线束的能量沉积; (b) 7 ns时二维密度分布; (c) 7 ns时Z = 500 μm处密度线分布

    Fig. 5.  Simulation of L2 laser irradiating the tungsten target without radiation: (a) Energy deposition at 4 ns, the red for the energy deposition of the ray beam; (b) 2D density distribution at 7 ns; (c) the density profile along the R direction at Z = 500 μm and t = 7 ns.

    图 6  L2激光辐照钨靶的辐射温度分布 4 ns (a)和5 ns (b)时二维辐射温度分布; 4 ns (c)和5 ns (d)时 Z = 700 μm处辐射温度线分布

    Fig. 6.  Radiation temperature distribution of L2 laser irradiating the tungsten target: 2D radiation temperature distribution at t = 4 ns (a) and t = 5 ns (b); the profile of radiation temperature at Z = 700 μm along R direction at t = 4 ns (c) and 5 ns (d).

    图 7  t = 3 ns有无辐射时L2激光辐照钨靶的等离子体速度分布

    Fig. 7.  Plasma velocity distribution at t = 3 ns of L2 laser irradiating the tungsten target with and without radiation.

    图 8  在不同物质中由对数密度表示成丝现象的强弱

    Fig. 8.  Logarithmic density versus atomic number, showing the strength of filamentation for different materials.

    表 1  激光参数

    Table 1.  Laser parameters.

    $ 激光简称 $${\text{L}}1$${\text{L2}}$${\text{L3}}$
    $ 能量E/\text{kJ} $$1.5$$1.5$$1.5$
    $ 时间t/\text{ns} $$[0, 0.1, 5, 5.1]$$[0, 0.1, 5, 5.1]$$[0, 0.1, 5, 5.1]$
    $ 功率P/\text{GW} $$[0, 300, 300, 0]$$[0, 300, 300, 0]$$[0, 300, 300, 0]$
    $ 焦斑半径r/\text{μm} $$200$$300$$400$
    $光强I/(\text{W}\cdot{\text{cm} }^{-2})$$2.387 \times {10^{14}}$$1.061 \times {10^{14}}$$5.968 \times {10^{13}}$
    $ 波长\lambda /\text{μm} $$1.053$$1.053$$1.053$
    下载: 导出CSV
    Baidu
  • [1]

    Basov N G, Krokhin O N 1964 J. Exp. Theor. Phys. 19 123

    [2]

    王淦昌 1987 中国激光 14 641Google Scholar

    Wang G C 1987 Chinese Laser 14 641Google Scholar

    [3]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [4]

    Zhang G, Huang M, Bonasera A, Ma Y G, Shen B F, Wang H W, Wang W P, Xu J C, Fan G T, Fu H J, Xue H, Zheng H, Liu L X, Zhang S, Li W J, Cao X G, Deng X G, Li X Y, Liu Y C, Yu Y, Zhang Y, Fu C B, Zhang X P 2019 Phys. Lett. A 383 2285Google Scholar

    [5]

    Zhao J R, Zhang X P, Yuan D W, Li Y T, Li D Z, Rhee Y J, Zhang Z, Li F, Zhu B J, Li Yan F, Han B, Liu C, Ma Y, Li Yi F, Tao M Z, Li M H, Guo X, Huang X G, Fu S Z, Zhu J Q, Zhao G, Chen L M, Fu C B, Zhang J A 2016 Sci. Rep. 6 27363Google Scholar

    [6]

    Qi W, Zhang X H, Zhang B, He S K, Zhang F, Cui B, Yu M H, Dai Z H, Peng X Y, Gu Y Q 2019 Phys. Plasmas 26 043103Google Scholar

    [7]

    Kasperczuk A, Pisarczyk T, Borodziuk S, Ullschmied J, Krousky E, Masek K, Rohlena K, Skala J, Hora H 2006 Phys. Plasmas 13 062704Google Scholar

    [8]

    郑无敌, 张国平 2008 计算物理 25 36Google Scholar

    Zheng W D, Zhang G P 2008 Computational Physics 25 36Google Scholar

    [9]

    Gao L, Nilson P M, Igumenshchev I V, Haines M G, Froula D H, Betti R, Meyerhofer D D 2015 Phys. Rev. Lett. 114 215003Google Scholar

    [10]

    Gao L, Nilson P M, Igumenshchev I V, Hu S X, Davies J R, Stoeckl C, Haines M G, Froula D H, Betti R, Meyerhofer D D 2012 Phys. Rev. Lett. 109 115001Google Scholar

    [11]

    Giulietti A, Coe S, Afshar-rad T, Desselberger M, Willi O, Danson C, Giulietti D 1991 Laser Interaction and Related Plasma Phenomena 155 261

    [12]

    Watkins H C, Kingham R J 2018 Phys. Plasmas 25 092701Google Scholar

    [13]

    Afsharrad T, Coe S E, Willi O, Desselberger M 1992 Phys. Plasmas 4 051301

    [14]

    张家泰, 刘松芬, 胡北来 2003 52 1668Google Scholar

    Zhang J T, Liu S F, Hu B L 2003 Acta Phys. Sin. 52 1668Google Scholar

    [15]

    李玉同, 张杰陈, 陈黎明, 赵理曾, 夏江帆, 滕浩, 李英俊, 朱成银, 江文勉 2001 50 204Google Scholar

    Li Y T, Zhang J, Chen L M, Zhao L Z, Xia J F, Teng H, Li Y J, Zhu C Y, Jiang W M 2001 Acta Phys. Sin. 50 204Google Scholar

    [16]

    Bret A, Firpo M C, Deutsch C 2005 Phys. Rev. Lett. 94 115002Google Scholar

    [17]

    Séguin F H, Li C K, Manuel M J E, Rinderknecht H G, Sinenian N, Frenie J A, Rygg J R, Hicks D G, Petrasso R D, Delettrez J, Betti R, Marshall F J, Smalyuk V A 2012 Phys. Plasmas 19 012701Google Scholar

    [18]

    Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2013 Phys. Rev. Lett. 111 225002Google Scholar

    [19]

    Manuel M J E, Khiar B, Rigon G, Albertazzi B, Klein S R, Kroll F, Brack F E, Michel T, Mabey P, Pikuz S, Williams J C, Koenig M, Casner A, Kuranz C C 2021 Matter Radiat. Extremes 6 026904

    [20]

    Willi O, Rumsby P T, Hooker C, Raven A, Lin Z Q 1982 Opt. Commun. 41 110Google Scholar

    [21]

    Willi O, Rumsby P T, Sartang S 1981 IEEE J. Quantum Electron. 17 1909Google Scholar

    [22]

    Willi O, Afshar-rad T, Desselberger M, Dunne M, Edwards J, Gizzi L, Khattak F, Riley D, Taylor R, Viana S 1992 Laser Interaction and Related Plasma Phenomena 142 517

    [23]

    Afshar-Rad T, Gizzi L A, Desselberger M, Khattak F, Willi O, Giulietti A 1992 Phys. Rev. Lett. 68 942Google Scholar

    [24]

    Desselberger M, Gizzi L, Barrow V, Edwards J, Khattak F, Viana S, Willi O, Danson C N 1992 Appl. Opt. 31 3759Google Scholar

    [25]

    Desselberger M, Afshar-rad T, Khattak F, Viana S, Willi O 1992 Phys. Rev. Lett. 68 1539Google Scholar

    [26]

    Lu Y, Tzeferacos P, Liang E, Follett R K, Gao L, Birkel A, Froula D H, Fu W, Ji H, Lamb D, Li C K, Sio H, Petrasso R, Wei M S 2019 Phys. Plasmas 26 022902Google Scholar

    [27]

    Flash Center for Computational Science, University of Chicago. http://flash.uchicago.edu [2019-03-29]

    [28]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 103059

    [29]

    Eidmann K 1994 Laser Part. Beams 12 223Google Scholar

    [30]

    田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 63 125205Google Scholar

    Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205Google Scholar

    [31]

    Lin Y, Kessler T J 1996 Opt. Lett. 21 1703Google Scholar

    [32]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar

    [33]

    Lefebvre E, Berger R L, Langdon A B, MacGowan B J, Rothenberg J E, Williams E A 1998 Phys. Plasmas 5 2701Google Scholar

    [34]

    Lal A K, Marsh K A, Clayton C E, Joshi C, McKinstrie C J, Li J S, Johnston T W 1997 Phys. Rev. Lett. 78 670Google Scholar

    [35]

    Dhareshwar L J, Naik P A, Sarkar S, Khan M, Chakraborty B 1992 Phys. Fluids B 4 1635Google Scholar

    [36]

    Nicolaï P, Tikhonchuk V T, Kasperczuk A, Pisarczyk T, Borodziuk S, Rohlena K, Ullschmied J 2006 Phys. Plasmas 13 062701Google Scholar

    [37]

    青波 2017 中国工程物理研究院科技年报 29

    Qing B 2017 Annual Report of Science and Technology of China Academy of Engineering Physics 29 (in Chinese)

    [38]

    Nicolaï P, Tikhonchuk V T, Kasperczuk A, Pisarczyk T, Borodzziuk S, Rohlena K, Ullschmied J 2007 Astrophys. Space Sci. 307 87Google Scholar

    [39]

    阿蔡塞 S 著 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社) 第300页

    Atzeni S (translated by Shen B F) 2004 The Physics of Inertial Fusion (Beijing: Science Press) p300 (in Chinese)

    [40]

    Evans R G 1981 J. Phys. D: Appl. Phys. 14 173Google Scholar

  • [1] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生.  , 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [2] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与亚临界密度等离子体相互作用中的近前向散射驱动光子加速机制.  , 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [3] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象.  , 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [4] 王云良, 颜学庆. 强激光与固体密度等离子体作用产生孤立阿秒脉冲的研究进展.  , 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [5] 王媛媛, 王羡之, 宋贾俊, 张旭, 王兆华, 魏志义. 超强激光在均匀等离子体中的背向拉曼散射放大机制.  , 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [6] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [7] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像.  , 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [8] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究.  , 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [9] 黎航, 杨冬, 李三伟, 况龙钰, 李丽灵, 袁铮, 张海鹰, 于瑞珍, 杨志文, 陈韬, 曹柱荣, 蒲昱东, 缪文勇, 王峰, 杨家敏, 江少恩, 丁永坤, 胡广月, 郑坚. 黑腔中等离子体相互作用的流体力学现象观测.  , 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [10] 李文秋, 王刚, 苏小保. 非磁化冷等离子体柱中的模式辐射特性分析.  , 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [11] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速.  , 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [12] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [13] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究.  , 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [14] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [15] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析.  , 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [16] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究.  , 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [17] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成.  , 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [18] 张 丽, 李向东, 蒋新革. 等离子体效应对类氦氖Kα线系电偶极辐射的影响.  , 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [19] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究.  , 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究.  , 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  3524
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 修回日期:  2022-07-28
  • 上网日期:  2022-11-22
  • 刊出日期:  2022-12-05

/

返回文章
返回
Baidu
map