搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光产生的强磁场及其对弓激波的影响

李彦霏 李玉同 朱保君 袁大伟 李芳 张喆 仲佳勇 魏会冈 裴晓星 刘畅 原晓霞 赵家瑞 韩波 廖国前 鲁欣 华能 朱宝强 朱健强 方智恒 安红海 黄秀光 赵刚 张杰

引用本文:
Citation:

强激光产生的强磁场及其对弓激波的影响

李彦霏, 李玉同, 朱保君, 袁大伟, 李芳, 张喆, 仲佳勇, 魏会冈, 裴晓星, 刘畅, 原晓霞, 赵家瑞, 韩波, 廖国前, 鲁欣, 华能, 朱宝强, 朱健强, 方智恒, 安红海, 黄秀光, 赵刚, 张杰

Strong magnetic fields generated with a metal wire irradiated by high power laser pulses and its effect on bow shock

Li Yan-Fei, Li Yu-Tong, Zhu Bao-Jun, Yuan Da-Wei, Li Fang, Zhang Zhe, Zhong Jia-Yong, Wei Hui-Gang, Pei Xiao-Xing, Liu Chang, Yuan Xiao-Xia, Zhao Jia-Rui, Han Bo, Liao Guo-Qian, Lu Xin, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, An Hong-Hai, Huang Xiu-Guang, Zhao Gang, Zhang Jie
PDF
导出引用
  • 强激光照射金属线圈后,会在打靶点附近的背景等离子体中诱发冷电子的回流,在金属丝内形成强电流源,从而产生强磁场.本文利用神光II高功率激光器产生的强激光照射金属丝靶,产生了围绕金属丝的环形强磁场.利用B-dot对局域磁感应强度进行了测量,根据测量结果,结合三维模拟程序,反演得到磁场的空间分布.再利用强激光与CH平面靶相互作用产生的超音速等离子体撞击该金属丝,产生了弓激波.通过光学成像手段研究了磁场对冲击波的影响,发现磁场使得弓激波的轮廓变得不明显并且张角变大.同时,通过实验室天体物理定标率,将金属丝表面等离子参数变换到相应的天体参数中,结果证明利用该实验方法可以在实验室中产生类似太阳风的磁化等离子体.
    Laboratory astrophysics is a rapid developing field studying astrophysical or astronomical processes on a high-power pulsed facility in laboratory. It has been proved that with the similarity criteria, the parameters in astrophysical processes can be transformed into those under laboratory conditions. With appropriate experimental designs the astrophysical processes can be simulated in laboratory in a detailed and controlled way. Magnetic fields play an important role in many astrophysical processes. Recently, the generation of strong magnetic fields and their effects on relevant astrophysics have attracted much interest. According to our previous work, a strong magnetic field can be induced by a huge current formed by the background cold electron flow around the laser spot when high power laser pulses irradiate a metal wire. In this paper we use this scheme to produce a strong magnetic field and observe its effect on a bow shock on the Shenguang II (SG II) laser facility. The strength of the magnetic field is measured by B-dot detectors. With the measured results, the magnetic field distribution is calculated by using a three-dimension code. Another bunch of lasers irradiates a CH planar target to generate a high-speed plasma. A bow shock is formed in the interaction of the high-speed plasma with the metal wire under the strong magnetic condition. The effects of the strong magnetic field on the bow shock are observed by shadowgraphy and interferometry. It is shown that the Mach number of the plasma flow is reduced by the magnetic field, leading to an increase of opening angle of the bow shock and a decrease of the density ratio between downstream and upstream. In addition, according to the similarity criteria, the experimental parameters of plasma are scaled to those in space. The transformed results show that the magnetized plasma around the wire, produced by X-ray emitted from the laser-irradiated planar target in the experiment, is suitable for simulating solar wind in astrophysics. In this paper, we provide another method to produce strong magnetic field, apply it to a bow shock laboratory astrophysical study, and also generate the magnetized plasma which can be used to simulate solar wind in the future experiments.
      通信作者: 李玉同, ytli@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CBA01501)、国家自然科学基金(批准号:11135012,11375262,11520101003,11503041)和科学挑战计划(批准号:TZ2016005)资助的课题.
      Corresponding author: Li Yu-Tong, ytli@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01501), the National Natural Science Foundation of China (Grant Nos. 11135012, 11375262, 11520101003, 11503041), and the Science Challenge Project (Grants No. TZ2016005).
    [1]

    Zank G P 1999 Space Sci. Rev. 89 413

    [2]

    Yamada M, Kulsrud R, Ji H 2010 Rev. Mod. Phys. 82 603

    [3]

    Russell C T, Luhmann J G, Strangeway R J 2006 Planet. Space Sci. 54 1482

    [4]

    Zhang T L, Lu Q M, Baumjohann W, Russell C T, Fedorov A, Barabash S, Coates A J, Du A M, Cao J B, Nakamura R, Teh W L, Wang R S, Dou X K, Wang S, Glassmeier K H, Auster H U, Balikhin M 2012 Science 336 567

    [5]

    Mitchell C B 1998 Astrophys. J. 493 291

    [6]

    Rigby B J, Mainstone J S 1973 Planet. Space Sci. 21 499

    [7]

    Pudritz R E, Hardcastle M J, Gabuzda D C 2012 Space Sci. Rev. 169 27

    [8]

    Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Ppin H, Portugall O 2013 Phys. Rev. Lett. 110 025002

    [9]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [10]

    Dong Q L, Wang S J, Lu Q M, Huang C, Yuan D W, Liu X, Lin X X, Li Y T, Wei H G, Zhong J Y, Shi J R, Jiang S E, Ding Y K, Jiang B B, Du K, He X T, Yu M Y, Liu C S, Wang S, Tang Y J, Zhu J Q, Zhao G, Sheng Z M, Zhang J 2012 Phys. Rev. Lett. 108 215001

    [11]

    Ryutov D D, Remington B A, Robey H F, Drake R P 2001 Phys. Plasmas 8 1804

    [12]

    Liu X, Li Y T, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Zhao G, Sakawa Y, Morita T, Kuramitsu Y, Kato T N, Chen L M, Lu X, Ma J L, Wang W M, Sheng Z M, Takabe H, Rhee Y J, Ding Y K, Jiang S E, Liu S Y, Zhu J Q, Zhang J 2011 New J. Phys. 13 093001

    [13]

    Yuan D W, Wu J F, Li Y, Lu X, Zhong J, Yin C, Su L, Liao G, Wei H, Zhang K, Han B, Wang L, Jiang S, Du K, Ding Y, Zhu J, He X, Zhao G, Zhang J 2015 Astrophys. J. 815 46

    [14]

    Dong Q L, Wang S J, Li Y T, Zhang Y, Zhao J, Wei H G, Shi J R, Zhao G, Zhang J Y, Gu Y Q, Ding Y K, Wen T S, Zhang W H, Hu X, Liu S Y, Zhang L, Tang Y J, Zhang B H, Zheng Z J, Nishimura H, Fujioka S, Wang F L, Takabe H, Zhang J 2010 Phys. Plasmas 17 012701

    [15]

    Yuan D W, Li Y T, Liu X, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Sakawa Y, Morita T, Kuramitsu Y, Kato T N, Takabe H, Rhee Y J, Zhu J Q, Zhao G, Zhang J 2013 High Energ. Dens. Phys. 9 239

    [16]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325

    [17]

    Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170

    [18]

    Gao L, Ji H T, Fiksel G, Fox W, Evans M, Alfonso N 2016 Phys. Plasmas 23 043106

    [19]

    Pei X X, Zhong J Y, Sakawa Y, Zhang Z, Zhang K, Wei H G, Li Y T, Li Y F, Zhu B J, Sano T, Hara Y, Kondo S, Fujioka S, Liang G Y, Wang F L, Zhao G 2016 Phys. Plasmas 23 032125

    [20]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Sguin F H, Town R P J, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Phys. Plasmas 22 042703

    [21]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Seguin F H, Town R P, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Nat. Commun. 6 6190

    [22]

    Zhang K, Zhong J Y, Wang J Q, Pei X X, Wei H G, Yuan D W, Yang Z W, Wang C, Li F, Han B, Yin C L, Liao G Q, Fang Y, Yang S, Yuan X H, Sakawa Y, Morita T, Cao Z R, Jiang S E, Ding Y K, Kuramitsu Y, Liang G Y, Wang F L, Li Y T, Zhu J Q, Zhang J, Zhao G 2015 High Energ. Dens. Phys. 17, PartA 32

    [23]

    Nilson P, Willingale L, Kaluza M, Kamperidis C, Minardi S, Wei M, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R, Tatarakis M, Najmudin Z, Rozmus W, Evans R, Haines M, Dangor A, Krushelnick K 2006 Phys. Rev. Lett. 97 255001

    [24]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P, Landen O L, Knauer J P, Smalyuk V A 2007 Phys. Rev. Lett. 99 055001

    [25]

    Zhong J Y, Lin J, Li Y T, Wang X, Li Y, Zhang K, Yuan D W, Ping Y L, Wei H G, Wang J Q, Su L N, Li F, Han B, Liao G Q, Yin C L, Fang Y, Yuan X, Wang C, Sun J R, Liang G Y, Wang F L, Ding Y K, He X T, Zhu J Q, Sheng Z M, Li G, Zhao G, Zhang J 2016 Astrophys. J. Suppl. Ser. 225 30

    [26]

    Zhu B J, Li Y T, Yuan D W, Li Y F, Li F, Liao G Q, Zhao J R, Zhong J Y, Xue F B, He S K, Wang W W, Lu F, Zhang F Q, Yang L, Zhou K N, Xie N, Hong W, Wei H G, Zhang K, Han B, Pei X X, Liu C, Zhang Z, Wang W M, Zhu J Q, Gu Y Q, Zhao Z Q, Zhang B H, Zhao G, Zhang J 2015 Appl. Phys. Lett. 107 261903

    [27]

    Landau L D, Lifshitz E M (translated by Li Z) 2013 Fluid Mechanics (Beijing: Higher Education Press) pp 359-411 (in Chinese) [朗道 L D, 栗弗席兹 E M 著 (李植 译) 2013 流体动力学(第五版) (北京: 高等教育出版社)第359411页]

    [28]

    Kuramitsu Y, Sakawa Y, Morita T, Gregory C D, Waugh J N, Dono S, Aoki H, Tanji H, Koenig M, Woolsey N, Takabe H 2011 Phys. Rev. Lett. 106 175002

  • [1]

    Zank G P 1999 Space Sci. Rev. 89 413

    [2]

    Yamada M, Kulsrud R, Ji H 2010 Rev. Mod. Phys. 82 603

    [3]

    Russell C T, Luhmann J G, Strangeway R J 2006 Planet. Space Sci. 54 1482

    [4]

    Zhang T L, Lu Q M, Baumjohann W, Russell C T, Fedorov A, Barabash S, Coates A J, Du A M, Cao J B, Nakamura R, Teh W L, Wang R S, Dou X K, Wang S, Glassmeier K H, Auster H U, Balikhin M 2012 Science 336 567

    [5]

    Mitchell C B 1998 Astrophys. J. 493 291

    [6]

    Rigby B J, Mainstone J S 1973 Planet. Space Sci. 21 499

    [7]

    Pudritz R E, Hardcastle M J, Gabuzda D C 2012 Space Sci. Rev. 169 27

    [8]

    Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Ppin H, Portugall O 2013 Phys. Rev. Lett. 110 025002

    [9]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [10]

    Dong Q L, Wang S J, Lu Q M, Huang C, Yuan D W, Liu X, Lin X X, Li Y T, Wei H G, Zhong J Y, Shi J R, Jiang S E, Ding Y K, Jiang B B, Du K, He X T, Yu M Y, Liu C S, Wang S, Tang Y J, Zhu J Q, Zhao G, Sheng Z M, Zhang J 2012 Phys. Rev. Lett. 108 215001

    [11]

    Ryutov D D, Remington B A, Robey H F, Drake R P 2001 Phys. Plasmas 8 1804

    [12]

    Liu X, Li Y T, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Zhao G, Sakawa Y, Morita T, Kuramitsu Y, Kato T N, Chen L M, Lu X, Ma J L, Wang W M, Sheng Z M, Takabe H, Rhee Y J, Ding Y K, Jiang S E, Liu S Y, Zhu J Q, Zhang J 2011 New J. Phys. 13 093001

    [13]

    Yuan D W, Wu J F, Li Y, Lu X, Zhong J, Yin C, Su L, Liao G, Wei H, Zhang K, Han B, Wang L, Jiang S, Du K, Ding Y, Zhu J, He X, Zhao G, Zhang J 2015 Astrophys. J. 815 46

    [14]

    Dong Q L, Wang S J, Li Y T, Zhang Y, Zhao J, Wei H G, Shi J R, Zhao G, Zhang J Y, Gu Y Q, Ding Y K, Wen T S, Zhang W H, Hu X, Liu S Y, Zhang L, Tang Y J, Zhang B H, Zheng Z J, Nishimura H, Fujioka S, Wang F L, Takabe H, Zhang J 2010 Phys. Plasmas 17 012701

    [15]

    Yuan D W, Li Y T, Liu X, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Sakawa Y, Morita T, Kuramitsu Y, Kato T N, Takabe H, Rhee Y J, Zhu J Q, Zhao G, Zhang J 2013 High Energ. Dens. Phys. 9 239

    [16]

    Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Beard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen S N, Cowan T E, Herrmannsdorfer T, Higginson D P, Kroll F, Pikuz S A, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt H P, Skobelev I Y, Faenov A Y, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pepin H, Fuchs J 2014 Science 346 325

    [17]

    Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H, Azechi H 2013 Sci. Rep. 3 1170

    [18]

    Gao L, Ji H T, Fiksel G, Fox W, Evans M, Alfonso N 2016 Phys. Plasmas 23 043106

    [19]

    Pei X X, Zhong J Y, Sakawa Y, Zhang Z, Zhang K, Wei H G, Li Y T, Li Y F, Zhu B J, Sano T, Hara Y, Kondo S, Fujioka S, Liang G Y, Wang F L, Zhao G 2016 Phys. Plasmas 23 032125

    [20]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Sguin F H, Town R P J, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Phys. Plasmas 22 042703

    [21]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Seguin F H, Town R P, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Nat. Commun. 6 6190

    [22]

    Zhang K, Zhong J Y, Wang J Q, Pei X X, Wei H G, Yuan D W, Yang Z W, Wang C, Li F, Han B, Yin C L, Liao G Q, Fang Y, Yang S, Yuan X H, Sakawa Y, Morita T, Cao Z R, Jiang S E, Ding Y K, Kuramitsu Y, Liang G Y, Wang F L, Li Y T, Zhu J Q, Zhang J, Zhao G 2015 High Energ. Dens. Phys. 17, PartA 32

    [23]

    Nilson P, Willingale L, Kaluza M, Kamperidis C, Minardi S, Wei M, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R, Tatarakis M, Najmudin Z, Rozmus W, Evans R, Haines M, Dangor A, Krushelnick K 2006 Phys. Rev. Lett. 97 255001

    [24]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P, Landen O L, Knauer J P, Smalyuk V A 2007 Phys. Rev. Lett. 99 055001

    [25]

    Zhong J Y, Lin J, Li Y T, Wang X, Li Y, Zhang K, Yuan D W, Ping Y L, Wei H G, Wang J Q, Su L N, Li F, Han B, Liao G Q, Yin C L, Fang Y, Yuan X, Wang C, Sun J R, Liang G Y, Wang F L, Ding Y K, He X T, Zhu J Q, Sheng Z M, Li G, Zhao G, Zhang J 2016 Astrophys. J. Suppl. Ser. 225 30

    [26]

    Zhu B J, Li Y T, Yuan D W, Li Y F, Li F, Liao G Q, Zhao J R, Zhong J Y, Xue F B, He S K, Wang W W, Lu F, Zhang F Q, Yang L, Zhou K N, Xie N, Hong W, Wei H G, Zhang K, Han B, Pei X X, Liu C, Zhang Z, Wang W M, Zhu J Q, Gu Y Q, Zhao Z Q, Zhang B H, Zhao G, Zhang J 2015 Appl. Phys. Lett. 107 261903

    [27]

    Landau L D, Lifshitz E M (translated by Li Z) 2013 Fluid Mechanics (Beijing: Higher Education Press) pp 359-411 (in Chinese) [朗道 L D, 栗弗席兹 E M 著 (李植 译) 2013 流体动力学(第五版) (北京: 高等教育出版社)第359411页]

    [28]

    Kuramitsu Y, Sakawa Y, Morita T, Gregory C D, Waugh J N, Dono S, Aoki H, Tanji H, Koenig M, Woolsey N, Takabe H 2011 Phys. Rev. Lett. 106 175002

  • [1] 孙伟, 吕冲, 雷柱, 王钊, 仲佳勇. 磁场对激光驱动的喷流演化影响的二维数值研究.  , 2023, 72(9): 097501. doi: 10.7498/aps.72.20230197
    [2] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与亚临界密度等离子体相互作用中的近前向散射驱动光子加速机制.  , 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [3] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生.  , 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [4] 王云良, 颜学庆. 强激光与固体密度等离子体作用产生孤立阿秒脉冲的研究进展.  , 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [5] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响.  , 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [6] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [7] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈.  , 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [8] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究.  , 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [9] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟.  , 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器.  , 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [11] 薄勇, 赵青, 罗先刚, 范佳, 刘颖, 刘建卫. 电磁波在时变磁化等离子体信道中通信性能的实验研究.  , 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [12] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究.  , 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [13] 袁学松, 鄢扬, 刘盛纲. 有限引导磁场下相对论环形电子注色散特性的研究.  , 2011, 60(1): 014102. doi: 10.7498/aps.60.014102
    [14] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究.  , 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [15] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法.  , 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [16] 刘少斌, 顾长青, 周建江, 袁乃昌. 磁化等离子体光子晶体的FDTD分析.  , 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [17] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法.  , 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [18] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法.  , 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [19] 唐德礼, 孙爱萍, 邱孝明. 均匀磁化等离子体与雷达波相互作用的数值分析.  , 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [20] 曾贵华, 诸鸿文, 徐至展. 欠稠密等离子体中诱发的偶次相对论谐波.  , 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
计量
  • 文章访问数:  6753
  • PDF下载量:  496
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-21
  • 修回日期:  2017-01-23
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map