Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improved parameter optimization method for measurement device independent protocol

Zhou Jiang-Ping Zhou Yuan-Yuan Zhou Xue-Jun

Citation:

Improved parameter optimization method for measurement device independent protocol

Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun
PDF
HTML
Get Citation
  • The optimal selection of parameters in practical quantum key distribution can greatly improve the key generation rate and maximum transmission distance of the system. Owing to the high cost of global search algorithm, local search algorithm is widely used. However, there are two shortcomings in local search algorithm. One is that the solution obtained is not always the global optimal solution, and the other is that the effectiveness of the algorithm is greatly dependent on the choice of initial value. This paper uses the Monte Carlo method to prove whether the key generation rate function is convex, and also simulates and analyzes the projection of the key generation rate function on each dimension of the parameter, in contrast to the approach in previous article. In order to eliminate the effect of the initial value, this paper proposes the particle swarm local search optimization algorithm which integrates particle swarm optimization algorithm and local search algorithm. The first step is to use the particle swarm optimization to find a valid parameter which leads to nonzero key generation rate, and the second step is to adopt the parameter as the initial value of local search algorithm to derive the global optimal solution. Then, the two algorithms are used to conduct simulation and their results are compared. The results show that the key generation rate function is non-convex because it does not satisfy the definition of a convex function, however, since the key generation rate function has only one non-zero stagnation point, the LSA algorithm can still obtain the global optimal solution with an appropriate initial value. When the transmission distance is relatively long, the local search algorithm is invalid because it is difficult to obtain an effective initial value by random value method. The particle swarm optimization algorithm can overcome this shortcoming and improve the maximum transmission distance of the system at the cost of slightly increasing the complexity of the algorithm.
      Corresponding author: Zhou Yuan-Yuan, EPJZYY@aliyun.com
    [1]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [2]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [3]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [4]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [5]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [6]

    Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V 2011 Nat. Commun. 2 349Google Scholar

    [7]

    Jain N, Stiller B, Khan I, Elser D, Marquardt C, Leuchs G 2016 Contemp. Phys. 57 366Google Scholar

    [8]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [9]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [10]

    Gu J, Cao X Y, Fu Y, He Z W, Yin Z J, Yin H L, Chen Z B 2022 Sci. Bull. 67 2167Google Scholar

    [11]

    Yin H L, Cao W F, Fu Y, Tang Y L, Liu Y, Chen T Y, Chen Z B 2014 Opt. Lett. 39 5451Google Scholar

    [12]

    Lo H K, Chau H F, Ardehali M 2005 J. Cryptol. 18 133Google Scholar

    [13]

    Wei Z, Wang W, Zhang Z, Gao M, Ma Z, Ma X 2013 Sci. Rep. 3 2453Google Scholar

    [14]

    Xu F, Xu H, Lo H K 2014 Phys. Rev. A 89 052333Google Scholar

    [15]

    Wang W, Lo H K 2019 Phys. Rev. A 100 062334Google Scholar

    [16]

    Ding H J, Liu J Y, Zhang C M, Wang Q 2020 Quantum Inf. Process. 19 60Google Scholar

    [17]

    Dong Q, Huang G, Cui W, Jiao R 2022 Quantum Inf. Process. 21 233Google Scholar

    [18]

    Dong Q, Huang G, Cui W, Jiao R 2021 Quantum Sci. Technol. 7 015014

    [19]

    Lu F Y, Yin Z Q, Wang C, Cui C H, Teng J, Wang S, Chen W, Huang W, Xu B J, Guo G C, Han Z F 2019 J. Opt. Soc. Am. B 36 B92Google Scholar

    [20]

    Boyd S P, Vandenberghe L 2004 Convex Optimization (New York: Cambridge University Press) p716

    [21]

    韩宝玲, 赵锐, 罗庆生, 徐峰, 赵嘉珩 2017 北京理工大学学报 37 461

    Han B L, Zhao R, Luo Q S, Xu F, Zhao J H 2017 J. Beijing Inst. Technol. 37 461

    [22]

    蒋丽, 叶润舟, 梁昌勇, 陆文星 2019 计算机工程与应用 55 130

    Jiang L, Ye R Z, Liang C Y, Lu W X 2019 Computer Engineering and Applications 55 130

    [23]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400Google Scholar

    [24]

    Ma X, Zeng P, Zhou H 2018 Phys. Rev. X 8 031043

    [25]

    Zhou L, Lin J, Jing Y, Yuan Z 2023 Nat. Commun. 14 928Google Scholar

    [26]

    Zeng P, Zhou H, Wu W, Ma X 2022 Nat. Commun. 13 3903Google Scholar

    [27]

    Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L, Chen Z B 2022 PRX Quantum. 3 020315Google Scholar

    [28]

    Ma X, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305Google Scholar

    [29]

    Sun S H, Gao M, Li C Y, Liang L M 2013 Phys. Rev. A 87 052329Google Scholar

    [30]

    Ma X, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326Google Scholar

    [31]

    Curty M, Xu F, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 3732Google Scholar

    [32]

    Xu F, Curty M, Qi B, Lo H K 2013 New J. Phys. 15 113007Google Scholar

    [33]

    Yang X S 2021 Nature-Inspired Optimization Algorithms (London: Elsevier) pp111–113

    [34]

    Gandomi A H, Yun G J, Yang X S, Talatahari S 2013 Commun. Nonlinear Sci. Numer. Simul. 18 327Google Scholar

    [35]

    Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al. 2007 Nat. Phys. 3 481Google Scholar

  • 图 1  凸性判别函数$ F\left( {\theta , {{\boldsymbol{x}}_1}, {{\boldsymbol{x}}_2}} \right) $在10000个随机输入下的取值

    Figure 1.  Values of convex discriminant function of $ F\left( {\theta , {{\boldsymbol{x}}_1}, {{\boldsymbol{x}}_2}} \right) $ with 10 thousand random input variables.

    图 2  密钥生成率随单个参数的变化曲线

    Figure 2.  Curves of key rate versus each parameter of the input.

    图 3  LSA优化时不同初始点对密钥生成率的影响

    Figure 3.  Influence of different start point on key rate using LSA optimization.

    图 4  利用不同优化算法所得密钥生成率对比

    Figure 4.  Comparison among three key rates obtained by different optimization algorithm.

    目标函数$ {f_{{\text{LSA}}}}\left( {{x_1}, \cdots , {x_n}} \right) $
    根据经验初始化搜索位置$ {p_0} = \left( {x_1^0, \cdots , x_n^0} \right) $, 初始化迭代次数
    t = 0;
    while (迭代判决条件) do
     for k = 1∶n
      对$ {f_{{\text{LSA}}}}\left( {x_1^{t + 1}, \cdots , x_{k - 1}^{t + 1}, x_k^t, x_{k + 1}^t, \cdots , x_n^t} \right) $在$ x_k^t $维度上
      进行线性回溯搜索
      if ${f_{ {\text{LSA} } } }\left( {x_1^{t + 1}, \cdots , x_{k - 1}^{t + 1}, x_k^{t + 1}, x_{k + 1}^t, \cdots , x_n^t} \right) > $
        $ {f_{ {\text{LSA} } } }\left( {x_1^{t + 1}, \cdots , x_{k - 1}^{t + 1}, x_k^t, x_{k + 1}^t, \cdots , x_n^t} \right)$
       更新$ x_k^t $为$ x_k^{t + 1} $
       $ {p_{t + 1}} = \left( {x_1^{t + 1}, \cdots , x_{k - 1}^{t + 1}, x_k^{t + 1}, x_{k + 1}^t, \cdots , x_n^t} \right) $
      else
       $ {p_{t + 1}} = \left( {x_1^{t + 1}, \cdots , x_{k - 1}^{t + 1}, x_k^t, x_{k + 1}^t, \cdots , x_n^t} \right) $
      end
     end
     更新迭代次数 t = t + 1
     更新搜索位置为$ {p_{t + 1}} $
    end
    输出最终结果$ \left( {x_1^{t + 1}, \cdots , x_n^{t + 1}} \right) $和$ {f_{{\text{LSA}}}}\left( {x_1^{t + 1}, \cdots , x_n^{t + 1}} \right) $
    DownLoad: CSV
    目标函数$ f\left( {\boldsymbol{x}} \right) $
    根据经验初始化粒子1的位置$ {{\boldsymbol{x}}_1} $
    初始化剩余$ n - 1 $个粒子的位置$ {{\boldsymbol{x}}_i} $和所有粒子的速度$ {{\boldsymbol{\nu }}_i} $
    寻找全局最优解$ {{\boldsymbol{g}}_{\text{a}}} $, $ {{\boldsymbol{g}}_{\text{a}}} = \min \left\{ {f\left( {{{\boldsymbol{x}}_1}} \right), \cdots , f\left( {{{\boldsymbol{x}}_n}} \right)} \right\} $
    while(迭代判决条件) do
     for 所有的粒子 do
      更新速度$ {\boldsymbol{\nu }}_i^{t + 1} $
      更新位置$ {\boldsymbol{x}}_i^{t + 1} $
      计算目标函数在新位置的值
      更新当前粒子的历史最优位置$ {\boldsymbol{x}}_i^* $
     end
    更新全局最优解$ {{\boldsymbol{g}}_{\text{a}}} $
     end
    输出最终结果$ {\boldsymbol{x}}_i^* $和$ {{\boldsymbol{g}}_{\text{a}}} $
    以$ {{\boldsymbol{g}}_{\text{a}}} $为初始点, 采用LSA算法求局部最优解
    DownLoad: CSV

    表 1  用于仿真分析的相关参数

    Table 1.  Practical parameters for numerical simulations.

    ${\eta _{\text{d}}}$/%${e_{\text{d}}}$/%${Y_0}$${f_{\text{e}}}$$\chi $$N$$\alpha $
    14.51.5$6.02 \times {10^{ - 6}}$1.16${10^{ - 7}}$${10^{12}}$0.21
    DownLoad: CSV

    表 2  可判别密钥生成率非凸的四个点

    Table 2.  Four points which can be used to discriminate the key rate is non convex function.

    参数$ {{\boldsymbol{x}}_1} $$ {{\boldsymbol{x}}_2} $$ {{\boldsymbol{x}}_3} $$ {{\boldsymbol{x}}_4} $
    $ \mu $0.400.600.500.075
    $ \nu $0.0370.0450.029$5.9 \times {10^{ - 3} }$
    $ \omega $$7.9 \times {10^{ - 4} }$$2.6 \times {10^{ - 3} }$$2.0 \times {10^{ - 3} }$$2.57 \times {10^{ - 4} }$
    $ {P_\mu } $0.150.480.540.020
    $ {P_\nu } $0.180.130.260.48
    $ {P_{{\text{X}}|\mu }} $0.80.140.760.14
    $ {P_{{\text{X}}|\nu }} $0.920.560.890.64
    $ {P_{{\text{X}}|\omega }} $0.250.990.540.55
    $ \theta $0.470.64
    $ F\left( {\theta , {\boldsymbol{x}}, {\boldsymbol{y}}} \right) $$ - 5.50 \times {10^{ - 6}} $$ 3.84 \times {10^{ - 6}} $
    DownLoad: CSV

    表 3  三种优化算法计算资源消耗比较

    Table 3.  Comparison of computational resource consumption among the three optimization algorithms.

    算法迭代次数时间/s密钥生成率
    LSA8580.12$ 4.13 \times {10^{ - 6}} $
    PSO400004.2$ 2.97 \times {10^{ - 6}} $
    PSLSA405594.29$ 4.13 \times {10^{ - 6}} $
    DownLoad: CSV
    Baidu
  • [1]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [2]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [3]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [4]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [5]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [6]

    Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V 2011 Nat. Commun. 2 349Google Scholar

    [7]

    Jain N, Stiller B, Khan I, Elser D, Marquardt C, Leuchs G 2016 Contemp. Phys. 57 366Google Scholar

    [8]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [9]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [10]

    Gu J, Cao X Y, Fu Y, He Z W, Yin Z J, Yin H L, Chen Z B 2022 Sci. Bull. 67 2167Google Scholar

    [11]

    Yin H L, Cao W F, Fu Y, Tang Y L, Liu Y, Chen T Y, Chen Z B 2014 Opt. Lett. 39 5451Google Scholar

    [12]

    Lo H K, Chau H F, Ardehali M 2005 J. Cryptol. 18 133Google Scholar

    [13]

    Wei Z, Wang W, Zhang Z, Gao M, Ma Z, Ma X 2013 Sci. Rep. 3 2453Google Scholar

    [14]

    Xu F, Xu H, Lo H K 2014 Phys. Rev. A 89 052333Google Scholar

    [15]

    Wang W, Lo H K 2019 Phys. Rev. A 100 062334Google Scholar

    [16]

    Ding H J, Liu J Y, Zhang C M, Wang Q 2020 Quantum Inf. Process. 19 60Google Scholar

    [17]

    Dong Q, Huang G, Cui W, Jiao R 2022 Quantum Inf. Process. 21 233Google Scholar

    [18]

    Dong Q, Huang G, Cui W, Jiao R 2021 Quantum Sci. Technol. 7 015014

    [19]

    Lu F Y, Yin Z Q, Wang C, Cui C H, Teng J, Wang S, Chen W, Huang W, Xu B J, Guo G C, Han Z F 2019 J. Opt. Soc. Am. B 36 B92Google Scholar

    [20]

    Boyd S P, Vandenberghe L 2004 Convex Optimization (New York: Cambridge University Press) p716

    [21]

    韩宝玲, 赵锐, 罗庆生, 徐峰, 赵嘉珩 2017 北京理工大学学报 37 461

    Han B L, Zhao R, Luo Q S, Xu F, Zhao J H 2017 J. Beijing Inst. Technol. 37 461

    [22]

    蒋丽, 叶润舟, 梁昌勇, 陆文星 2019 计算机工程与应用 55 130

    Jiang L, Ye R Z, Liang C Y, Lu W X 2019 Computer Engineering and Applications 55 130

    [23]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400Google Scholar

    [24]

    Ma X, Zeng P, Zhou H 2018 Phys. Rev. X 8 031043

    [25]

    Zhou L, Lin J, Jing Y, Yuan Z 2023 Nat. Commun. 14 928Google Scholar

    [26]

    Zeng P, Zhou H, Wu W, Ma X 2022 Nat. Commun. 13 3903Google Scholar

    [27]

    Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L, Chen Z B 2022 PRX Quantum. 3 020315Google Scholar

    [28]

    Ma X, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305Google Scholar

    [29]

    Sun S H, Gao M, Li C Y, Liang L M 2013 Phys. Rev. A 87 052329Google Scholar

    [30]

    Ma X, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326Google Scholar

    [31]

    Curty M, Xu F, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 3732Google Scholar

    [32]

    Xu F, Curty M, Qi B, Lo H K 2013 New J. Phys. 15 113007Google Scholar

    [33]

    Yang X S 2021 Nature-Inspired Optimization Algorithms (London: Elsevier) pp111–113

    [34]

    Gandomi A H, Yun G J, Yang X S, Talatahari S 2013 Commun. Nonlinear Sci. Numer. Simul. 18 327Google Scholar

    [35]

    Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al. 2007 Nat. Phys. 3 481Google Scholar

  • [1] Lai Hong, Ren Li, Huang Zhong-Rui, Wan Lin-Chun. Quantum Network Communication Resource Optimization Scheme Based on Multi-Scale Entanglement Renormalization Ansatz. Acta Physica Sinica, 2024, 73(23): 1-14. doi: 10.7498/aps.73.20241382
    [2] Chen Yue, Liu Chang-Jie, Zheng Yi-Jia, Cao Yuan, Guo Ming-Xuan, Zhu Jia-Li, Zhou Xing-Yu, Yu Xiao-Song, Zhao Yong-Li, Wang Qin. On-demand provisioning strategy for inter-domain key services in multi-domain cross-protocol quantum networks. Acta Physica Sinica, 2024, 73(17): 170301. doi: 10.7498/aps.73.20240819
    [3] Zhu Jia-Li, Cao Yuan, Zhang Chun-Hui, Wang Qin. Optimal resource allocation in practical quantum key distribution optical networks. Acta Physica Sinica, 2023, 72(2): 020301. doi: 10.7498/aps.72.20221661
    [4] Zhou Yang, Ma Xiao, Zhou Xing-Yu, Zhang Chun-Hui, Wang Qin. Study of practical state-preparation error tolerant reference-frame-independent quantum key distribution protocol. Acta Physica Sinica, 2023, 72(24): 240301. doi: 10.7498/aps.72.20231144
    [5] Liu Tian-Le, Xu Xiao, Fu Bo-Wei, Xu Jia-Xin, Liu Jing-Yang, Zhou Xing-Yu, Wang Qin. Regression-decision-tree based parameter optimization of measurement-device-independent quantum key distribution. Acta Physica Sinica, 2023, 72(11): 110304. doi: 10.7498/aps.72.20230160
    [6] Li Xin-Peng, Cao Rui-Jie, Li Ming, Guo Ge-Pu, Li Yu-Zhi, Ma Qing-Yu. Super-resolution acoustic focusing based on the particle swarm optimization of super-oscillation. Acta Physica Sinica, 2022, 71(20): 204304. doi: 10.7498/aps.71.20220898
    [7] Chen Yi-Peng, Liu Jing-Yang, Zhu Jia-Li, Fang Wei, Wang Qin. Application of machine learning in optimal allocation of quantum communication resources. Acta Physica Sinica, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [8] Ma Xiao, Sun Ming-Shuo, Liu Jing-Yang, Ding Hua-Jian, Wang Qin. State preparation error tolerant quantum key distribution protocol based on heralded single photon source. Acta Physica Sinica, 2022, 71(3): 030301. doi: 10.7498/aps.71.20211456
    [9] Li Ming-Fei, Yuan Zi-Hao, Liu Yuan-Xing, Deng Yi-Cheng, Wang Xue-Feng. Comparison between optimal configuration algorithms of fiber phased array. Acta Physica Sinica, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [10] Du Cong, Wang Jin-Dong, Qin Xiao-Juan, Wei Zheng-Jun, Yu Ya-Fei, Zhang Zhi-Ming. A simple protocol for measuring device independent quantum key distribution based on hybrid encoding. Acta Physica Sinica, 2020, 69(19): 190301. doi: 10.7498/aps.69.20200162
    [11] Gu Wen-Yuan, Zhao Shang-Hong, Dong Chen, Wang Xing-Yu, Yang Ding. Reference-frame-independent measurement-device-independent quantum key distribution under reference frame fluctuation. Acta Physica Sinica, 2019, 68(24): 240301. doi: 10.7498/aps.68.20191364
    [12] Wu Cheng-Feng, Du Ya-Nan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [13] Du Ya-Nan, Xie Wen-Zhong, Jin Xuan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [14] Liu Rui-Lan, Wang Xu-Liang, Tang Chao. Identification for hole transporting properties of NPB based on particle swarm optimization algorithm. Acta Physica Sinica, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [15] Chen Ying, Wang Wen-Yue, Yu Na. Improvement of the filtering performance of a heterostructure photonic crystal ring resonator using PSO algorithm. Acta Physica Sinica, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [16] Zheng Shi-Lian, Yang Xiao-Niu. Parameter adaptation in green cognitive radio. Acta Physica Sinica, 2012, 61(14): 148402. doi: 10.7498/aps.61.148402
    [17] Wang Xiao-Feng, Xue Hong-Jun, Si Shou-Kui, Yao Yue-Ting. Mixture control of chaotic system using particle swarm optimization algorithms and OGY method. Acta Physica Sinica, 2009, 58(6): 3729-3733. doi: 10.7498/aps.58.3729
    [18] Zhao Zhi-Jin, Xu Shi-Yu, Zheng Shi-Lian, Yang Xiao-Niu. Cognitive radio decision engine based on binary particle swarm optimization. Acta Physica Sinica, 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [19] Hu Hua-Peng, Zhang Jing, Wang Jin-Dong, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao, Lu Wei. Experimental quantum key distribution with double protocol. Acta Physica Sinica, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [20] Chen Xia, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Li Ming-Ming, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. A phase modulated QKD system with two quantum cryptography protocols. Acta Physica Sinica, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
Metrics
  • Abstract views:  3017
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  12 February 2023
  • Accepted Date:  19 April 2023
  • Available Online:  05 May 2023
  • Published Online:  20 June 2023

/

返回文章
返回
Baidu
map