搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于监控标记单光子源的量子密钥分发协议

罗一振 马洛嘉 孙铭烁 吴思睿 邱丽华 王禾 王琴

引用本文:
Citation:

基于监控标记单光子源的量子密钥分发协议

罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴

Source monitoring quantum key distribution protocol based on heralded single photon source

Luo Yi-Zhen, Ma Luo-Jia, Sun Ming-Shuo, Wu Si-Rui, Qiu Li-Hua, Wang He, Wang Qin
PDF
导出引用
  • 现有量子密钥分发系统的光源主要是弱相干态光源,但是由于该类光源中含有大量的真空态脉冲,并且在光源调制过程中可能存在一定信息泄露,从而限制了量子密钥分发系统的最远安全传输距离。为克服这一局限,本文提出了一种基于监控标记单光子源的量子密钥分发协议。一方面,通过借助标记单光子源中极低的真空态概率,提升了系统的极限传输距离;另一方面,我们在系统发射端添加了Hong-Ou-Mandel(HOM)光源监控模块,通过测量HOM干涉可见度的大小来精确刻画出源端可能泄露信息量的大小,从而更加准确地估算出系统可提取密钥率的大小。此外,将本工作与其他同类协议进行了数值仿真对比,仿真结果显示,本协议在传输距离和密钥率等方面具有更加优越的性能。因此,本工作为未来发展更安全可靠的量子通信网络提供了重要的参考价值。
    The security of quantum key distribution (QKD) is based on the basic principles of quantum mechanics, and it thus has unconditional security in theory. In existing quantum key distribution systems, weak coherent sources (WCS) are often utilized as light sources, resulting in limited transmission distances, due to a high probability of vacuum pulses in these sources. Besides, there inevitably exist equipment defects in practical QKD systems, e.g., the phase modulator and intensity modulator have certain defects, causing distinguishability in higher dimensions of quantum states, and resulting in side-channel vulnerabilities. An eavesdropper can carry out corresponding attacks, and thus threaten practical security of QKD systems.
    To overcome the above limitations, we propose an improved protocol on quantum key distribution based on monitoring heralded single-photon sources. Due to the simultaneity of parametric down-conversion photon pairs, we can precisely herald the arriving of one photon, by measuring the arrival time of another one. Through this way, we can greatly reduce the probability of vacuum states in the signal light, and increase the longest transmission distance of the QKD system. Moreover, a light source monitoring module is inserted into the sender’s side. By randomly select certain period to measure the Hong-Ou-Mandel interference between the signal light and the idle light through the source monitoring module, we can estimate the side-channel information leakage of the source, and then obtain the key generation rate.
    Compared with the QKD protocol based on monitoring weak coherent sources, our present work can give a better performance in either the transmission distance or the key generation rate, especially when the interference error is large. In addition, in principle, our present work can also be extended to other quantum key distribution protocols, such as the measurement-device-independent protocols, to further improve the security and practicability of QKD systems. Therefore, our present work can provide valuable references for the large-scale application of quantum communication networks in the near future.
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Vol. 1 of 3) (Bangalore: IEEE) p175

    [2]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656

    [3]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557

    [4]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 1305003

    [5]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400

    [6]

    Zeng P, Zhou H Y, Wu W J, Ma X F 2022 Nat. Commun. 13 3903

    [7]

    Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Yao, Yin H L, Chen Z B 2022 PRX Quantum 3 020315

    [8]

    Tamaki K, Curty M, Lucamarini M 2016 New J. Phys. 18 065008

    [9]

    Xu F, Wei K, Sajeed S, Kaiser S, Sun S, Tang Z, Qian L, Makarov V, Lo H K 2015 Phys. Rev. A 92 032305

    [10]

    Sun S H, Gao M, Jiang M S, Li C Y, Liang L M 2012 Phys. Rev. A 85 032304

    [11]

    Nauerth S, Fürst M, Schmitt-Manderbach T, Weier H, Weinfurter H 2009 New J. Phys. 11 065001

    [12]

    Comandar L, Lucamarini M, Fröhlich B, Dynes J F, Yuan Z L, Shields A J 2016 Opt. Express 24 17849

    [13]

    Mauerer W, Avenhaus, Helwig W, Silberhorn C 2009 Phys. Rev. A 80 053815

    [14]

    Faruque I I, Sinclair G F, Bonneau D, Ono T, Silberhorn C, Thompson M G, Rarity J G 2019 Phys. Rev. Appl. 12 054029

    [15]

    Wang J, Zhang C H, Liu J Y, Qian X R, Li J, Wang Q 2021 Chin. Phys. B 30 070304

    [16]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2017 Phys. Rev. A 96 052337

    [17]

    Zhang C H, Zhang C M, Wang Q 2019 Phys. Rev. A 99 052325

    [18]

    Alexander D, Denis S 2021 Phys. Rev. A 104 012601

    [19]

    Duplinskiy A, Sych D 2021 Phys. Rev. A 104 012601

    [20]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312

    [21]

    Tamaki K, Curty M, Lucamarini M 2016 New J. Phys. 18 065008

    [22]

    Ma Z, Zhang F L, Chen J L 2009 Phys. Lett. A 373 3407

    [23]

    Wang X B 2005 Phys. Rev. Lett. 94 230503

    [24]

    Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504

    [25]

    Tomamichel M, Lim C C W, Gisin N, Renner R 2012 Nat. Commun. 3 634

    [26]

    Lucamarini M, Choi I, Ward M B, Dynes J F, Yuan Z L, Shields A J 2015 Phys. Rev. X 5 031030

    [27]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2017 Phys. Rev. A 96 052337

    [28]

    Sun M S, Wang W L, Zhou X Y, Zhang C H, Wang Q 2023 Phys. Rev. Res. 5 043179

    [29]

    Comandar L, Lucamarini M, Fröhlich B, Dynes J, Yuan Z, Shields A 2016 Opt. Express. 24 17849

    [30]

    Zhan X H, Zhong Z Q, Wang S, Yin Z Q, Chen W, He D Y, Guo G C, Han Z F 2023 Phys. Rev. Appl. 20 034069

  • [1] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发.  , doi: 10.7498/aps.72.20230652
    [2] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统.  , doi: 10.7498/aps.71.20220120
    [3] 马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴. 一种基于标记单光子源的态制备误差容忍量子密钥分发协议.  , doi: 10.7498/aps.71.20211456
    [4] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用.  , doi: 10.7498/aps.71.20220344
    [5] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发.  , doi: 10.7498/aps.69.20191689
    [6] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析.  , doi: 10.7498/aps.65.100302
    [7] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析.  , doi: 10.7498/aps.64.110301
    [8] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究.  , doi: 10.7498/aps.63.140303
    [9] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发.  , doi: 10.7498/aps.59.287
    [10] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案.  , doi: 10.7498/aps.57.4941
    [11] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究.  , doi: 10.7498/aps.57.5605
    [12] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案.  , doi: 10.7498/aps.57.5600
    [13] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用.  , doi: 10.7498/aps.57.678
    [14] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案.  , doi: 10.7498/aps.56.6427
    [15] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发.  , doi: 10.7498/aps.56.1924
    [16] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发.  , doi: 10.7498/aps.56.5243
    [17] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统.  , doi: 10.7498/aps.56.6434
    [18] 李明明, 王发强, 路轶群, 赵 峰, 陈 霞, 梁瑞生, 刘颂豪. 高稳定的差分相位编码量子密钥分发系统.  , doi: 10.7498/aps.55.4642
    [19] 吴 光, 周春源, 陈修亮, 韩晓红, 曾和平. 长距离长期稳定的量子密钥分发系统.  , doi: 10.7498/aps.54.3622
    [20] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统.  , doi: 10.7498/aps.54.5014
计量
  • 文章访问数:  26
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-25

/

返回文章
返回
Baidu
map