-
Quantum Key Distribution (QKD) is a pivotal technology in the field of secure communications, leveraging the principles of quantum mechanics to enable theoretically unbreakable encryption. However, despite its promise, QKD faces significant challenges in achieving large-scale deployment. The primary hurdle lies in the scarcity of quantum resources, especially entangled photon pairs, which are fundamental to protocols such as Ekert91. In traditional QKD implementations, only a fraction of the entangled pairs generated contribute to raw key production, leading to substantial inefficiencies and resource wastage. Addressing this limitation is crucial to the advancement and scalability of QKD networks. This paper introduces an innovative approach to QKD by integrating the Multiscale Entanglement Renormalization Ansatz (MERA), a technique originally developed for many-body quantum systems. By utilizing MERA's hierarchical structure, the proposed method not only improves the efficiency of entanglement distribution but also reduces the consumption of quantum resources. Specifically, MERA compresses many-body quantum states into lower-dimensional representations, allowing for the transmission and storage of entanglement in a more efficient manner. This compression significantly reduces the number of qubits required, optimizing both entanglement utilization and storage capacity in quantum networks. To evaluate the performance of this method, we conducted simulations under standardized conditions. The simulations assumed a 1024-bit encryption request, an 8% error rate, an average path length of 4 hops in the quantum network, and a 95% success rate for both link entanglement generation and entanglement swapping operations. These parameters mirror realistic physical conditions found in contemporary QKD networks. The results demonstrate that the MERA-based approach saves an impressive 124,151 entangled pairs compared to traditional QKD protocols. This substantial reduction in resource consumption underscores the potential of MERA to revolutionize the efficiency of QKD systems without compromising security. Importantly, the security of the key exchange process remains intact, as the method inherently adheres to the principles of quantum mechanics, particularly the no-cloning theorem and the use of randomness in decompression layers. The paper concludes that MERA not only enhances the scalability of QKD by optimizing quantum resource allocation but also maintains the security guarantees essential for practical cryptographic applications. By integrating MERA into existing QKD frameworks, we can significantly lower the resource overhead, making large-scale, secure quantum communication more feasible. These findings contribute a new dimension to the field of quantum cryptography, suggesting that advanced quantum many-body techniques like MERA hold the potential to unlock the full potential of quantum networks in real-world scenarios. -
Keywords:
- Quantum key distribution /
- Multi-scale entanglement renormalization ansatz /
- Resource utilization /
- Security
-
表 1 网络请求属性及其取值范围
Table 1. Network request attributes and their value ranges.
属性 描述 取值范围 S 发送方 N/A D 接收方 N/A k 需求量 $ [1024, 4096] $ P 优先级 $ [1, 5] $ $ \Delta t $ 可接受时延 $ [1, 60] $ -
[1] Wootters W K, Zurek W H 1982 Nature 299 802Google Scholar
[2] Peev M, Pacher C, Alléaume R 2009 New J. Phys. 11 075001Google Scholar
[3] Dianati M, Alléaume R, Gagnaire M 2008 Security Commun. Networks 1 57Google Scholar
[4] Aguado A, Lopez V, Lopez D 2019 IEEE Commun. Mag. 57 20
[5] Donetti L, Hurtado P I, Munoz M A 2005 Phys. Rev. Lett. 95 188701Google Scholar
[6] Li Z, Xue K P, Li J 2023 IEEE Commun. Surv. Tutor. 25 2133Google Scholar
[7] Pant M, Krovi H, Towsley D 2019 npj Quantum Inf. 5 25Google Scholar
[8] Shi S, Zhang X, Qian C 2024 IEEE/ACM Trans. Netw. 32 2205Google Scholar
[9] Li J, Wang M, Xue K P 2022 IEEE Trans. Commun. 70 6748Google Scholar
[10] Gu H Y, Li Z Y 2024 IEEE/ACM Trans. Netw. 1 125
[11] Ekert A 1991 Phys. Rev. Lett. 67 661Google Scholar
[12] Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar
[13] Li C, Li T, Liu Y X 2021 npj Quantum Inf. 7 10Google Scholar
[14] 赖红 2023 72 149
Lai H 2023 Acta Phys. Sin. 72 149
[15] Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370Google Scholar
[16] Cincio L, Dziarmaga J, Rams M M 2008 Phys. Rev. Lett. 100 240603Google Scholar
[17] Lai H, Pieprzyk J, Pan L 2022 Phys. Rev. A 106 052403Google Scholar
[18] Pirandola S, García-Patrón R, Braunstein S L 2009 Phys. Rev. Lett. 102 050503Google Scholar
[19] Pirandola S, Laurenza R, Ottaviani C 2017 Nat. Commun. 8 1500Google Scholar
[20] Wehner S, Elkouss D, Hanson R 2018 Science 362 9288Google Scholar
[21] Bernien H, Hensen B, Pfaff W 2013 Nature 497 86Google Scholar
[22] Olmschenk S, Matsukevich D N, Maunz P 2009 Science 323 486Google Scholar
[23] Pan J W, Bouwmeester D, Weinfurter H 1998 Phys. Rev. Lett. 80 3891Google Scholar
[24] Bravyi S, Cross A W, Gambetta J M 2024 Nature 627 778Google Scholar
[25] Bersin E, Sutula M, Huan Y Q 2024 PRX Quantum 5 010303Google Scholar
[26] Fan R, Bao Y, Altman E 2024 PRX Quantum 5 020343Google Scholar
[27] Zhang Q, Lai H, Pieprzyk J 2022 Phys. Rev. A 105 032439Google Scholar
[28] Lai H, Pieprzyk J, Pan L 2023 Sci. China Inf. Sci. 66 180510Google Scholar
[29] Shannon C E 1949 Bell Syst. Tech. J. 28 656Google Scholar
[30] Orús R 2014 Ann. Phys. 349 117Google Scholar
[31] Chen L Q, Zhao M N, Yu K L 2021 Quantum Information Processing. 20 1Google Scholar
[32] Elkouss D, Martinez J, Lancho D 2010 IEEE Information Theory Workshop on Information Theory Cairo, Egypt, October 10—13, 2010 p1
[33] Gisin N, Ribordy G, Tittel W 2002 Rev. Mod. Phys. 74 145Google Scholar
[34] Wu X, Zhu W P, Yan J 2017 IEEE Trans. Veh. Technol. 66 8223Google Scholar
[35] Bennett C H, Brassard G, Robert J M 1988 SIAM J. Comput. 17 210Google Scholar
[36] Eibl M, Kiesel N, Bourennane M, et al 2004 Phys. Rev. Lett. 92 077901Google Scholar
[37] Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910Google Scholar
[38] Affleck I, Kennedy T, Lieb E H 2004 Condensed Matter Phys. Exactly Soluble Models: Selecta Elliott H. Lieb (Berlin: Springer-Verlag) pp249-252
[39] Affleck I 1989 J. Phys. Condens. Matter 1 3047Google Scholar
Metrics
- Abstract views: 157
- PDF Downloads: 3
- Cited By: 0