搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多域跨协议量子网络的域间密钥业务按需提供策略

陈越 刘长杰 郑伊佳 曹原 郭明轩 朱佳莉 周星宇 郁小松 赵永利 王琴

引用本文:
Citation:

多域跨协议量子网络的域间密钥业务按需提供策略

陈越, 刘长杰, 郑伊佳, 曹原, 郭明轩, 朱佳莉, 周星宇, 郁小松, 赵永利, 王琴

On-demand provisioning strategy for inter-domain key services in multi-domain cross-protocol quantum networks

Chen Yue, Liu Chang-Jie, Zheng Yi-Jia, Cao Yuan, Guo Ming-Xuan, Zhu Jia-Li, Zhou Xing-Yu, Yu Xiao-Song, Zhao Yong-Li, Wang Qin
PDF
HTML
导出引用
  • 现有的城域量子网络大多基于单一的量子密钥分发协议实现, 将不同协议实现的城域量子网络进行互联是大规模量子网络的发展趋势, 但其域间密钥业务提供仍存在成功率低、密钥供需不适配等问题. 针对以上问题, 本文面向多域跨协议量子网络提出了两种域间密钥业务按需提供策略, 分别是基于BB84(Bennett-Brassard-1984)旁路优先的按需提供策略和基于测量设备无关(measurement-device-independent, MDI)旁路优先的按需提供策略. 同时, 设计了内嵌两种策略的域间密钥业务按需提供算法. 仿真结果表明, 所提策略能够在双域和三域量子网络中高效完成域间密钥业务的按需提供. 相比传统策略, 两种按需提供策略可将多域量子网络的密钥供需均衡度提高1个数量级以上, MDI旁路优先策略在低密钥率需求下可将域间密钥业务请求成功率提升30%. 此外, 所提策略可在一定程度上降低域间密钥业务提供的成本, 提高现实安全水平.
    Most of the existing metropolitan quantum networks are implemented based on a single quantum key distribution protocol, and interconnecting metropolitan quantum networks implemented by different protocols are the development trend of large-scale quantum networks, but there are still some problems in the provision of inter-domain key services, such as low possibility of success and mismatch between key supply and demand. To solve the above problems, this paper proposes two on-demand inter-domain key service provisioning strategies for multi-domain cross-protocol quantum networks, namely, on-demand provisioning strategy based on BB84 bypass first (BB84-BF) and on-demand provisioning strategy based on MDI bypass first (MDI-BF). Meanwhile, a service provisioning model for multi-domain cross-protocol quantum networks is constructed, and an on-demand inter-domain key service provisioning algorithm is designed. Moreover, numerical simulations and performance evaluation are carried out under two scenarios: high key rate demand and low key rate demand for two-domain and three-domain quantum network topologies. Simulation results verify that the proposed on-demand provisioning strategies have better applicability to different multi-domain quantum networks. In addition, for different key rate requirements, the MDI-BF strategy and BB84-BF strategys have different performance advantages under different performance indicators. For example, in terms of the success possibility of inter-domain key service requests, the MDI-BF strategy is more suitable for the low key rate requirements (~30% higher than the traditional strategies in two domain topologies), while the BB84-BF strategy is more suitable for the high key rate requirements (~19% higher than the traditional strategies under two domain topologies). In addition, compared with the traditional strategies, the proposed on-demand provisioning strategies can increase the balance degree between key supply and demand by more than one order of magnitude. Hence, the proposed strategies can reduce the cost of inter-domain key service provisioning and improve the realistic security level.
      通信作者: 曹原, yuancao@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62201276, 62350001, U22B2026, 62101285)、江苏省重点研发计划产业前瞻与关键核心技术项目(批准号: BE2022071)和江苏省高等学校自然科学研究项目(批准号: 22KJB510007)资助的课题.
      Corresponding author: Cao Yuan, yuancao@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62201276, 62350001, U22B2026, 62101285), the Industry Foresight and Key Core Technology Project of Key R&D Plan of Jiangsu Province, China (Grant No. BE2022071), and the Natural Science Research Project of Jiangsu Higher Education Institutions, China (Grant No. 22KJB510007).
    [1]

    Yang Z, Zolanvari M, Jain R 2023 IEEE Commun. Surveys Tuts. 25 1059Google Scholar

    [2]

    Gill S S, Kumar A, Singh H, Singh M, Kaur K, Usman M, Buyya R 2022 Softw. Pract. Exp. 52 66Google Scholar

    [3]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photon. 8 595Google Scholar

    [4]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul S J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [5]

    Bennett C H, Brassard G 1984 IEEE Int. Conf. Comput. Syst. Signal Process. Bangalore, India, January, 1984 p175

    [6]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [7]

    Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photon. 17 416Google Scholar

    [8]

    Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S, Chen Z B 2023 Nat. Sci. Rev. 10 nwac228Google Scholar

    [9]

    Cao Y, Zhao Y, Wang Q, Zhang J, Ng S X, Hanzo L 2022 IEEE Commun. Surveys Tuts. 24 839Google Scholar

    [10]

    Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Yang, Lu C Y, Jiang X, Ma X F, Zhang Q, Chen T Y, Pan J W 2016 Phys. Rev. X 6 011024Google Scholar

    [11]

    Joshi S K, Aktas D, Wengerowsky S, Lončarić M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Ž, Kling L, Qiu A, Razavi M, Stipčević M, Rarity J G, Ursin R 2020 Sci. Adv. 6 eaba0959Google Scholar

    [12]

    Avesani M, Foletto G, Padovan M, Calderaro L, Agnesi C, Bazzani E, Berra F, Bertapelle T, Picciariello F, Santagiustina F, Scalcon D, Scriminich A, Stanco A, Vedovato F, Vallone G, Villoresi P 2023 Quantum Computing, Communication, and Simulation III San Francisco, United States, 2023 p112

    [13]

    Cao Y, Zhao Y L, Zhang J, Wang Q, Niyato D, Hanzo L 2022 IEEE Netw. 36 14Google Scholar

    [14]

    Cao Y, Zhao Y L, Zhang J, Wang Q 2022 IEEE Commun. Mag. 60 38Google Scholar

    [15]

    Zhou L, Lin J P, Xie Y M, Lu Y S, Jing Y M, Yin H L, Yuan Z L 2023 Phys. Rev. Lett. 130 250801Google Scholar

    [16]

    Fan-Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C, Han Z F 2021 Photonics Res. 9 1881Google Scholar

    [17]

    Tysowski P K, Ling X, Lütkenhaus N, Mosca M 2018 Quantum Sci. Technol. 3 024001Google Scholar

    [18]

    Li P, Yu X, Zhao Y, Zhang J 2023 Opto-Electronic and Communications Conference Shanghai, China, July 2–6, 2023 p1

    [19]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [20]

    Ma X F, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326Google Scholar

    [21]

    Xu F H, Xu H, Lo H K 2014 Phys. Rev. A 89 052333Google Scholar

    [22]

    Ma X F, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305Google Scholar

    [23]

    Wang X B 2013 Phys. Rev. A 87 012320Google Scholar

    [24]

    Yu Z W, Zhou Y H, Wang X B 2013 Phys. Rev. A 88 062339Google Scholar

    [25]

    Curty M, Xu F, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 3732Google Scholar

    [26]

    Wang Q, Wang X B 2014 Sci. Rep. 4 4612Google Scholar

    [27]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

  • 图 1  多域跨协议量子网络

    Fig. 1.  Multi-domain cross-protocol quantum networks.

    图 2  多域跨协议量子网络的密钥中继结构示例

    Fig. 2.  Example of the key relay structure in a multi-domain cross-protocol quantum network.

    图 3  密钥中继路径示例 (a) 传统策略; (b) MDI-BF策略; (c) BB84-BF策略

    Fig. 3.  Examples of QKD relay paths: (a) Traditional strategy; (b) MDI-BF strategy; (c) BB84-BF strategy.

    图 4  仿真使用的多域量子网络拓扑 (a) 双域拓扑; (b) 三域拓扑

    Fig. 4.  Multi-domain quantum network topologies used for simulations: (a) Two-domain topology; (b) three-domain topology.

    图 5  不同策略下域间密钥业务请求成功率随负载的变化关系 (a) 双域量子网络; (b) 三域量子网络

    Fig. 5.  Success possibility of inter-domain key service requests versus traffic load for different strategies: (a) Two-domain quantum network; (b) three-domain quantum network.

    图 6  不同策略下域间密钥业务请求成功率随最大延迟时间的变化关系

    Fig. 6.  Success possibility of inter-domain key service requests versus maximum delay time for different strategies.

    图 7  不同策略下全网最小密钥供应速率随负载的变化关系 (a) 双域量子网络; (b) 三域量子网络

    Fig. 7.  Minimum key supply rate versus traffic load for different strategies: (a) Two-domain quantum network; (b) three-domain quantum network.

    图 8  不同策略下密钥供需均衡度随负载的变化关系 (a) 双域量子网络; (b) 三域量子网络

    Fig. 8.  Balance degree between key supply and demand versus traffic load for different strategies: (a) Two-domain quantum network; (b) three-domain quantum network.

    图 9  不同策略下密钥供需均衡度随最大延迟时间的变化关系

    Fig. 9.  Balance degree between key supply and demand versus maximum delay time for different strategies.

    图 10  不同策略下平均可信节点数量随负载的变化关系 (a) 双域量子网络; (b) 三域量子网络

    Fig. 10.  Average number of trusted nodes versus traffic load for different strategies: (a) Two-domain quantum network; (b) three-domain quantum network.

    表 1  域间密钥业务按需提供算法

    Table 1.  Algorithm for on-demand provisioning of inter-domain key services.

    输入: $G\left( {V, E} \right)$, ${V_{\text{B}}}$, ${V_{\text{M}}}$, ${V_{{\text{BJ}}}}$, ${V_{{\text{MJ}}}}$, $R$
    输出: 每个成功的域间密钥业务的密钥中继路径${p_r}\left( {{N_{{p_r}}}, {L_{{p_r}}}, {B_{{p_r}}}, {m_{{p_r}}}} \right)$, ${R_{\text{S}}}$
    1 初始化变量${R_{\text{S}}} \leftarrow \emptyset $;
    2 for 每个域间密钥业务请求$r\left( {{s_r}, {d_r}, {k_r}, {t_r}} \right) \in R$ do
    3  更新全网各节点设备占用状态;
    4  如果源宿节点没有可用的QKD设备, 则该业务失败;
    5  if 执行BB84-BF策略 then
    6   for ${v_i} \in {V_{{\text{MJ}}}}$ do
    7    if ${\lambda _{{v_i}}} < 2$ then
    8     将${v_i}$从$V$中移除并更新$E$;
    9    end if
    10   end for
    11  end if
    12  基于K短路径算法计算源宿节点间的K条备选密钥中继路径, 路径集合为${P_r}$;
    13  if ${P_r} = \emptyset $ then
    14   域间密钥业务请求r失败;
    15  end if
    16  for 每条密钥中继路径${p_r}\left( {{N_{{p_r}}}, {L_{{p_r}}}, {B_{{p_r}}}, {m_{{p_r}}}} \right) \in {P_r}$ do
    17   ${N_{{p_r}}} \leftarrow $${p_r}$经过的QKD节点集合, ${L_{{p_r}}} \leftarrow $${p_r}$经过的QKD链路集合, ${B_{{p_r}}} \leftarrow \emptyset $, ${m_{{p_r}}} \leftarrow {p_r}$的密钥供应
      速率;
    18   for $n_{{p_r}}^i \in {N_{{p_r}}}$ do
    19    if 执行MDI-BF策略 && $n_{{p_r}}^i \in {V_{{\text{MJ}}}}$ then
    20     ${B_{{p_r}}} \leftarrow \{ {B_{{p_r}}}, n_{{p_r}}^i\} $;
    21    end if
    22    if $n_{{p_r}}^i \in {V_{\text{B}}}$ && $n_{{p_r}}^i \ne {d_r}$ && $n_{{p_r}}^i \ne {s_r}$ && (${\lambda _{n_{{p_r}}^i}} = 0~||~{\varepsilon _{n_{{p_r}}^i}} = 0 $) then
    23     ${B_{{p_r}}} \leftarrow \{ {B_{{p_r}}}, n_{{p_r}}^i\} $;
    24    end if
    25   end for
    26   ${m_{{p_r}}} \leftarrow $根据更新后的密钥中继路径重新计算${m_{{p_r}}}$;
    27   if ${m_{{p_r}}} < {k_r}$ then
    28    continue;
    29   else
    30    for $n_{{p_r}}^i \in {N_{{p_r}}}$do
    31     if 旁路$n_{{p_r}}^i$后密钥中继路径密钥供应速率$ \geqslant {k_r}$ then
    32      ${B_{{p_r}}} \leftarrow \{ {B_{{p_r}}}, n_{{p_r}}^i\} $, 更新${m_{{p_r}}}$;
    33     end if
    34    end for
    35    将${p_r}$作为域间密钥业务r的最终密钥中继路径, ${R_{\text{S}}} \leftarrow \left\{ {{R_{\text{S}}}, r} \right\}$;
    36    break;
    37   end if
    38  end for
    39  如果${P_r}$中没有满足密钥率需求的密钥中继路径, 则该业务失败;
    40 end for
    41 return 每个成功的域间密钥业务的密钥中继路径${p_r}\left( {{N_{{p_r}}}, {L_{{p_r}}}, {B_{{p_r}}}, {m_{{p_r}}}} \right)$, ${R_{\text{S}}}$
    下载: 导出CSV

    表 2  密钥生成率仿真参数

    Table 2.  Simulation parameters for key rates.

    参数 取值
    真空态误码率${e_0}$ 0.5
    本底误码${e_{\text{d}}}$/% 1
    暗计数率${p_{\text{d}}}$ ${10^{ - 7}}$
    探测效率${\eta _{\text{d}}}$/% 40
    纠错效率${f_{\text{e}}}$ 1.16
    光纤衰减常数$\alpha $/(dB·km–1) 0.2
    重复频率/GHz 1
    下载: 导出CSV
    Baidu
  • [1]

    Yang Z, Zolanvari M, Jain R 2023 IEEE Commun. Surveys Tuts. 25 1059Google Scholar

    [2]

    Gill S S, Kumar A, Singh H, Singh M, Kaur K, Usman M, Buyya R 2022 Softw. Pract. Exp. 52 66Google Scholar

    [3]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photon. 8 595Google Scholar

    [4]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul S J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [5]

    Bennett C H, Brassard G 1984 IEEE Int. Conf. Comput. Syst. Signal Process. Bangalore, India, January, 1984 p175

    [6]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [7]

    Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photon. 17 416Google Scholar

    [8]

    Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S, Chen Z B 2023 Nat. Sci. Rev. 10 nwac228Google Scholar

    [9]

    Cao Y, Zhao Y, Wang Q, Zhang J, Ng S X, Hanzo L 2022 IEEE Commun. Surveys Tuts. 24 839Google Scholar

    [10]

    Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Yang, Lu C Y, Jiang X, Ma X F, Zhang Q, Chen T Y, Pan J W 2016 Phys. Rev. X 6 011024Google Scholar

    [11]

    Joshi S K, Aktas D, Wengerowsky S, Lončarić M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Ž, Kling L, Qiu A, Razavi M, Stipčević M, Rarity J G, Ursin R 2020 Sci. Adv. 6 eaba0959Google Scholar

    [12]

    Avesani M, Foletto G, Padovan M, Calderaro L, Agnesi C, Bazzani E, Berra F, Bertapelle T, Picciariello F, Santagiustina F, Scalcon D, Scriminich A, Stanco A, Vedovato F, Vallone G, Villoresi P 2023 Quantum Computing, Communication, and Simulation III San Francisco, United States, 2023 p112

    [13]

    Cao Y, Zhao Y L, Zhang J, Wang Q, Niyato D, Hanzo L 2022 IEEE Netw. 36 14Google Scholar

    [14]

    Cao Y, Zhao Y L, Zhang J, Wang Q 2022 IEEE Commun. Mag. 60 38Google Scholar

    [15]

    Zhou L, Lin J P, Xie Y M, Lu Y S, Jing Y M, Yin H L, Yuan Z L 2023 Phys. Rev. Lett. 130 250801Google Scholar

    [16]

    Fan-Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C, Han Z F 2021 Photonics Res. 9 1881Google Scholar

    [17]

    Tysowski P K, Ling X, Lütkenhaus N, Mosca M 2018 Quantum Sci. Technol. 3 024001Google Scholar

    [18]

    Li P, Yu X, Zhao Y, Zhang J 2023 Opto-Electronic and Communications Conference Shanghai, China, July 2–6, 2023 p1

    [19]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [20]

    Ma X F, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326Google Scholar

    [21]

    Xu F H, Xu H, Lo H K 2014 Phys. Rev. A 89 052333Google Scholar

    [22]

    Ma X F, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305Google Scholar

    [23]

    Wang X B 2013 Phys. Rev. A 87 012320Google Scholar

    [24]

    Yu Z W, Zhou Y H, Wang X B 2013 Phys. Rev. A 88 062339Google Scholar

    [25]

    Curty M, Xu F, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 3732Google Scholar

    [26]

    Wang Q, Wang X B 2014 Sci. Rep. 4 4612Google Scholar

    [27]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

  • [1] 朱佳莉, 曹原, 张春辉, 王琴. 实用化量子密钥分发光网络中的资源优化配置.  , 2023, 72(2): 020301. doi: 10.7498/aps.72.20221661
    [2] 杜聪, 王金东, 秦晓娟, 魏正军, 於亚飞, 张智明. 基于混合编码的测量设备无关量子密钥分发的简单协议.  , 2020, 69(19): 190301. doi: 10.7498/aps.69.20200162
    [3] 谷文苑, 赵尚弘, 东晨, 王星宇, 杨鼎. 参考系波动下的参考系无关测量设备无关量子密钥分发协议.  , 2019, 68(24): 240301. doi: 10.7498/aps.68.20191364
    [4] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离.  , 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [5] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响.  , 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [6] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法.  , 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [7] 何广强, 郭红斌, 李昱丹, 朱思维, 曾贵华. 基于二进制均匀调制相干态的量子密钥分发方案.  , 2008, 57(4): 2212-2217. doi: 10.7498/aps.57.2212
    [8] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用.  , 2008, 57(2): 678-684. doi: 10.7498/aps.57.678
    [9] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案.  , 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [10] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案.  , 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [11] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究.  , 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [12] 郑力明, 王发强, 刘颂豪. 光纤色散与损耗对光量子密钥分发系统的影响.  , 2007, 56(4): 2180-2183. doi: 10.7498/aps.56.2180
    [13] 赵 峰, 路轶群, 王发强, 陈 霞, 李明明, 郭邦红, 廖常俊, 刘颂豪. 基于微弱相干脉冲稳定差分相位量子密钥分发.  , 2007, 56(4): 2175-2179. doi: 10.7498/aps.56.2175
    [14] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案.  , 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
    [15] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发.  , 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [16] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发.  , 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [17] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统.  , 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [18] 李明明, 王发强, 路轶群, 赵 峰, 陈 霞, 梁瑞生, 刘颂豪. 高稳定的差分相位编码量子密钥分发系统.  , 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
    [19] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统.  , 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
    [20] 吴 光, 周春源, 陈修亮, 韩晓红, 曾和平. 长距离长期稳定的量子密钥分发系统.  , 2005, 54(8): 3622-3626. doi: 10.7498/aps.54.3622
计量
  • 文章访问数:  726
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-07-14
  • 上网日期:  2024-07-29
  • 刊出日期:  2024-09-05

/

返回文章
返回
Baidu
map