- 
				Recently, the$\Lambda$ polarization has been observed at relativistic heavy-ion collider (RHIC) and large hadron collider (LHC). This observation has inspired many studies on spin dynamics of quantum chromodynamics (QCD) many-body physics, thus opening a new avenue to studying the hot and dense nuclear matter.This paper reviews the recent progress of spin effects in relativistic heavy-ion collisions, with an emphasis on the quantum correlation between spin and motion in QCD matter, including newly discovered shear-induced polarization (SIP), a novel effect that fluid shear polarizes the spin. The linear response theory’s applications to studying those effects are also systematically reviewed. Finally, their observational signatures in experiments are discussed.- 
										Keywords:
										
- quantum chromodynamics phase diagram /
- spin
 [1] Bzdak A, Esumi S, Koch V, Liao J, Stephanov M, Xu N 2020 Phys. Rep. 853 1  Google Scholar Google Scholar[2] Luo X, Wang Q, Xu N, Zhuang P 2022 Properties of QCD Matter at High Baryon Density (Berlin: Springer) [3] Busza W, Rajagopal K, van der Schee W 2018 Ann. Rev. Nucl. Part. Sci. 68 339  Google Scholar Google Scholar[4] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: 2006 Phys. Rev. Lett. 96 039901] [5] Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32  Google Scholar Google Scholar[6] Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62  Google Scholar Google Scholar[7] Acharya S, Adamová D, Adler A, et al. 2020 Phys. Rev. Lett. 125 012301  Google Scholar Google Scholar[8] Abdallah M S, Aboona B E, Adam J, et al. 2023 Nature 614 244  Google Scholar Google Scholar[9] Kharzeev D E, Liao J, Voloshin S A, Wang G 2016 Prog. Part. Nucl. Phys. 88 1  Google Scholar Google Scholar[10] Wang F Q, Zhao J 2018 Nucl. Sci. Tech. 29 179  Google Scholar Google Scholar[11] Hattori K, Huang X G 2017 Nucl. Sci. Tech. 28 26  Google Scholar Google Scholar[12] Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56  Google Scholar Google Scholar[13] Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90  Google Scholar Google Scholar[14] Hidaka Y, Pu S, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989  Google Scholar Google Scholar[15] Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901  Google Scholar Google Scholar[16] Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100  Google Scholar Google Scholar[17] Weickgenannt N, Speranza E, Sheng X l, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301  Google Scholar Google Scholar[18] Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2021 Phys. Lett. B 814 136096  Google Scholar Google Scholar[19] Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701  Google Scholar Google Scholar[20] Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H U 2021 JHEP 11 150 [21] Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014  Google Scholar Google Scholar[22] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213  Google Scholar Google Scholar[23] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801  Google Scholar Google Scholar[24] Liu S Y F, Yin Y 2021 JHEP 07 188 [25] Becattini F, Buzzegoli M, Palermo A 2021 Phys. Lett. B 820 136519  Google Scholar Google Scholar[26] Lin S, Wang Z 2022 JHEP 12 030 [27] Liu S Y F, Yin Y 2021 Phys. Rev. D 104 054043  Google Scholar Google Scholar[28] Becattini F 2022 Rep. Prog. Phys. 85 122301  Google Scholar Google Scholar[29] Wagner D, Weickgenannt N, Speranza E 2023 Phys. Rev. Res. 5 013187  Google Scholar Google Scholar[30] Fu B, Liu S Y F, Pang L, Song H, Yin Y 2021 Phys. Rev. Lett. 127 142301  Google Scholar Google Scholar[31] Adam J, Adamczyk L, Adams J R, et al. 2019 Phys. Rev. Lett. 123 132301  Google Scholar Google Scholar[32] Becattini F, Buzzegoli M, Inghirami G, Karpenko I, Palermo A 2021 Phys. Rev. Lett. 127 272302  Google Scholar Google Scholar[33] Acharya S, Adamová D, Adler A, et al. 2022 Phys. Rev. Lett. 128 172005  Google Scholar Google Scholar[34] Becattini F, Karpenko I, Lisa M, Upsal I, Voloshin S 2017 Phys. Rev. C 95 054902  Google Scholar Google Scholar[35] Yang Y G, Fang R H, Wang Q, Wang X N 2018 Phys. Rev. C 97 034917  Google Scholar Google Scholar[36] Xia X L, Li H, Huang X G, Zhong H H 2021 Phys. Lett. B 817 136325  Google Scholar Google Scholar[37] Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005  Google Scholar Google Scholar[38] Müller B, Müller B, Yang D L, Yang D L 2022 Phys. Rev. D 105 L011901 [Erratum: 2022 Phys. Rev. D 106 039904] [39] Liang Z T, Wang X N 2005 Phys. Lett. B 629 20  Google Scholar Google Scholar
- 
				
    
    
图 1 自旋霍尔效应示意. 对于自旋霍尔材料(如某些半导体, 见文献[22]的总结), 在施加了电场的条件下, 费米子的速度 $ {\boldsymbol v} $ 与其自旋方向$ {\boldsymbol s} $ 将产生关联, 见正文和方程(2)Figure 1. An illustration of spin Hall effect (SHE). For SHE material (such as semi-conductor as listed in Ref. [22]), the velocity of a fermion $ {\boldsymbol v} $ will be correlated with its spin direction$ {\boldsymbol s} $ , see text and Eq. (2)
- 
				
[1] Bzdak A, Esumi S, Koch V, Liao J, Stephanov M, Xu N 2020 Phys. Rep. 853 1  Google Scholar Google Scholar[2] Luo X, Wang Q, Xu N, Zhuang P 2022 Properties of QCD Matter at High Baryon Density (Berlin: Springer) [3] Busza W, Rajagopal K, van der Schee W 2018 Ann. Rev. Nucl. Part. Sci. 68 339  Google Scholar Google Scholar[4] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: 2006 Phys. Rev. Lett. 96 039901] [5] Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32  Google Scholar Google Scholar[6] Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62  Google Scholar Google Scholar[7] Acharya S, Adamová D, Adler A, et al. 2020 Phys. Rev. Lett. 125 012301  Google Scholar Google Scholar[8] Abdallah M S, Aboona B E, Adam J, et al. 2023 Nature 614 244  Google Scholar Google Scholar[9] Kharzeev D E, Liao J, Voloshin S A, Wang G 2016 Prog. Part. Nucl. Phys. 88 1  Google Scholar Google Scholar[10] Wang F Q, Zhao J 2018 Nucl. Sci. Tech. 29 179  Google Scholar Google Scholar[11] Hattori K, Huang X G 2017 Nucl. Sci. Tech. 28 26  Google Scholar Google Scholar[12] Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56  Google Scholar Google Scholar[13] Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90  Google Scholar Google Scholar[14] Hidaka Y, Pu S, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989  Google Scholar Google Scholar[15] Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901  Google Scholar Google Scholar[16] Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100  Google Scholar Google Scholar[17] Weickgenannt N, Speranza E, Sheng X l, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301  Google Scholar Google Scholar[18] Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2021 Phys. Lett. B 814 136096  Google Scholar Google Scholar[19] Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701  Google Scholar Google Scholar[20] Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H U 2021 JHEP 11 150 [21] Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014  Google Scholar Google Scholar[22] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213  Google Scholar Google Scholar[23] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801  Google Scholar Google Scholar[24] Liu S Y F, Yin Y 2021 JHEP 07 188 [25] Becattini F, Buzzegoli M, Palermo A 2021 Phys. Lett. B 820 136519  Google Scholar Google Scholar[26] Lin S, Wang Z 2022 JHEP 12 030 [27] Liu S Y F, Yin Y 2021 Phys. Rev. D 104 054043  Google Scholar Google Scholar[28] Becattini F 2022 Rep. Prog. Phys. 85 122301  Google Scholar Google Scholar[29] Wagner D, Weickgenannt N, Speranza E 2023 Phys. Rev. Res. 5 013187  Google Scholar Google Scholar[30] Fu B, Liu S Y F, Pang L, Song H, Yin Y 2021 Phys. Rev. Lett. 127 142301  Google Scholar Google Scholar[31] Adam J, Adamczyk L, Adams J R, et al. 2019 Phys. Rev. Lett. 123 132301  Google Scholar Google Scholar[32] Becattini F, Buzzegoli M, Inghirami G, Karpenko I, Palermo A 2021 Phys. Rev. Lett. 127 272302  Google Scholar Google Scholar[33] Acharya S, Adamová D, Adler A, et al. 2022 Phys. Rev. Lett. 128 172005  Google Scholar Google Scholar[34] Becattini F, Karpenko I, Lisa M, Upsal I, Voloshin S 2017 Phys. Rev. C 95 054902  Google Scholar Google Scholar[35] Yang Y G, Fang R H, Wang Q, Wang X N 2018 Phys. Rev. C 97 034917  Google Scholar Google Scholar[36] Xia X L, Li H, Huang X G, Zhong H H 2021 Phys. Lett. B 817 136325  Google Scholar Google Scholar[37] Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005  Google Scholar Google Scholar[38] Müller B, Müller B, Yang D L, Yang D L 2022 Phys. Rev. D 105 L011901 [Erratum: 2022 Phys. Rev. D 106 039904] [39] Liang Z T, Wang X N 2005 Phys. Lett. B 629 20  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 6195
- PDF Downloads: 131
- Cited By: 0


 
					 
		         
	         
  
					 
												







 
							



 DownLoad:
DownLoad: 
				 
							

 
							