Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium

Wang Yin Zhou Si-Jie Chen Qiao Deng Yong-He

Citation:

Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium

Wang Yin, Zhou Si-Jie, Chen Qiao, Deng Yong-He
PDF
HTML
Get Citation
  • Based on the current growth technology of quantum dot in the experiment, considering that the probe fields and control fields at different frequencies are coupled between different energy levels of the InAs/GaAs quantum dot, the ladder-type, Λ-type and V-type energy level configurations can be formed. The linear and nonlinear properties of these energy level configurations of InAs/GaAs quantum dots are studied by using semiclassical theory combined with multiple scale method. It is shown that in the linear case, electromagnetic induction transparency windows can be formed among ladder-type, Λ-type and V-type energy level configurations. And the width of the transparent window increases with the strength of the control pulse increasing. For the nonlinear case, under the current experimental condition, optical solitons can be formed and stored in ladder-type configuration and $ {{\Lambda }} $-type energy level configuration. However, optical solitons cannot be formed in the V-type energy level configurations, which is because the nonlinear effect of the system is very weak. Furthermore, it is demonstrated that the fidelity of the storage and retrieval of the optical solitons is higher than that of linear optical pulse and strongly nonlinear optical pulse. Interestingly, it is also found that the amplitude of stored optical solitons in $ {{\Lambda }} $-type energy level configuration is higher than that in ladder-type energy level configuration. This study provides a theoretical basis for semiconductor quantum dot devices to modulate the amplitude of the stored optical solitons.
      Corresponding author: Wang Yin, 21112@hnie.edu.cn
    • Funds: Supported by the National Natural Science Foundation of China (Grant No. 11832016), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2020JJ4240, 2022JJ50115), and the Doctoral Startup Foundation of Hunan Institute of Engineering, China (Grant No. 22RC018).
    [1]

    Kivshar Y S, Agrawal G 2003 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic Press)

    [2]

    Dauxois T, Peyrard M 2006 Physics of Solitons (Cambridge: Cambridge University Press)

    [3]

    Wang Y, Ding J W, Wang D L, Liu W M 2020 Chaos 30 123133Google Scholar

    [4]

    Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503Google Scholar

    [5]

    Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307Google Scholar

    [6]

    Li Z D, Guo Q Q, Guo Y, He P B, Liu W M 2021 Chin. Phys. B 30 107506Google Scholar

    [7]

    Guo H, Qiu X, Ma Y, Jiang H F, Zhang X F 2021 Chin. Phys. B 30 060310Google Scholar

    [8]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar

    [9]

    Harris S E 1997 Phys. Today 50 36

    [10]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [11]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830Google Scholar

    [12]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617Google Scholar

    [13]

    Li H J, Huang G X 2008 Phys. Lett. A 372 4127Google Scholar

    [14]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [15]

    Dong Y Y, Wang D L, Wang Y, Ding J W 2018 Phys. Lett. A 382 2006Google Scholar

    [16]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [17]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820Google Scholar

    [18]

    Shou C, Huang G X 2019 Phys. Rev. A 99 043821Google Scholar

    [19]

    Chen Z M, Bai Z Y, Li H J, Hang C, Huang G X 2015 Sci. Rep. 5 8211Google Scholar

    [20]

    朱天伟, 徐波, 何军, 赵凤瑷, 张春玲, 谢二庆, 刘峰奇, 王占国 2004 53 301Google Scholar

    Zhu T W, Xu B, He J, Zhao F A, Zhang C L, Xie E Q, Liu F Q, Wang Z G 2004 Acta Phys. Sin. 53 301Google Scholar

    [21]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [22]

    谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲 2018 67 064207Google Scholar

    Tan K B, Lu H M, Guan Q, Zhang G S, Chen C C 2018 Acta Phys. Sin. 67 064207Google Scholar

    [23]

    田芃, 黄黎蓉, 费淑萍, 余奕, 潘彬, 徐巍, 黄德修 2010 59 5738Google Scholar

    Tian P, Huang L R, Fei S P, Y Yi, Pan B, Xu W, Huang D X 2010 Acta Phys. Sin. 59 5738Google Scholar

    [24]

    Hasnain C C J, Cheng P K, Jungho K, Chuang S L 2003 Proc. IEEE 9 1884Google Scholar

    [25]

    Kraus R M, Lagoudakis P G, Rogach A L, Talapin D V, Weller H, Lupton J M, Feldmann J 2007 Phys. Rev. Lett. 98 017401Google Scholar

    [26]

    Krenner H J, Pryor C E, He J, Petroff P M 2008 Nano Lett. 8 1750Google Scholar

    [27]

    Ramsay A J, Boyle S J, Kolodka R S, Oliveira J B B, Szymanska J S, Liu H Y, Hopkinson M, Fox A M, Skolnick M S 2008 Phys. Rev. Lett. 100 197401Google Scholar

    [28]

    唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 66 034202Google Scholar

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar

    [29]

    杨璇, 王胤, 王登龙, 丁建文 2020 69 174203Google Scholar

    Yang X, Wang Y, Wang D L, Ding J W 2020 Acta Phys. Sin. 69 174203Google Scholar

    [30]

    Wang Y, Ding J W, Wang D L 2020 Eur. Phys. J. D 74 190Google Scholar

    [31]

    Zhou S J, Wang D L, Dong Y Y, Bai Z Y, Ding J W 2022 Phys. Lett. A 448 128320Google Scholar

    [32]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar

    [33]

    曾宽宏, 王登龙, 佘彦超, 张蔚曦 2013 62 147801Google Scholar

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta. Phys. Sin. 62 147801Google Scholar

    [34]

    Antón M A, Carreño F, Calderón O G, Melle S 2008 Opt. Commun. 281 3301Google Scholar

    [35]

    Gerardot B D, Brunner D, Dalgarno P A, Karrai K, Badolato A, Petroff P M, Warburton R J 2009 New J. Phys. 11 013028Google Scholar

    [36]

    Khaledi N A, Sabaeian M, Sahrai M, Fallahi V 2014 J. Opt. 16 055004Google Scholar

    [37]

    Ku P C, Hasnain C C J, Chuang S L 2007 J. Phys. D 40 R93Google Scholar

    [38]

    Khursan A A H, Khakani A M K, Mossawi A K H 2009 Photon. Nanostruct. Fundam. Appl. 7 153Google Scholar

    [39]

    Abdullah M, Noori F T M, Khursan A A H 2015 Superlattices Microstruct. 82 219Google Scholar

    [40]

    Houmark J, Nielsen T R, Mørk J, Jauho A P 2009 Phys. Rev. B 79 115420Google Scholar

  • 图 1  半导体量子点的三能级构型机理示意图 (a)梯形; (b)$ {{\Lambda }} $形; (c) V形

    Figure 1.  Schematic diagram of three energy level in the semiconductor quantum dot: (a) Ladder-type; (b) $ {{\Lambda }} $-type energy; (c) V-type.

    图 2  梯形三能级量子点EIT构型示意图

    Figure 2.  Schematic diagram of ladder-type three energy level in the quantum dot EIT configuration.

    图 3  在不同控制光强$ {\varOmega }_{{\rm{c}}1} $下体系对探测光的吸收谱线图. 图中所用其他参数为${\gamma }_{21}=3.3\;{\rm{μ}}{\rm{e}}{\rm{V}}$, ${\gamma }_{31}=3.3\times $$ {10}^{-4}\;{\rm{μ }}{\rm{e}}{\rm{V}}$, ${\kappa }_{12}=1317{{\rm{c}}{\rm{m}}}^{-1}\;{\rm{μ}}{\rm{e}}{\rm{V}}$

    Figure 3.  The linear absorption coefficient $ {K}_{0{\rm{i}}} $as a function of the detuning ${\varDelta }_{{\rm{p}}1}$ with different control fields ${\varOmega }_{{\rm{c}}1}$. Other parameters used are ${\gamma }_{21}=3.3\;{\rm{μ}}{\rm{e}}{\rm{V}}$, ${\gamma }_{31}=3.3\times {10}^{-4}\;{\rm{μ }}{\rm{e}}{\rm{V}}$, and ${\kappa }_{12}=1317\;{{\rm{c}}{\rm{m}}}^{-1}\;{\rm{μ }}{\rm{e}}{\rm{V}}$, respectively.

    图 4  透明窗口区域内光孤子的传播. 光孤子波形${|{\varOmega }_{{\rm{p}}1}/{U}_{0}|}^{2}$${z}/{L}_{{\rm{D}}}$$ t/{\tau }_{0} $的变化情况

    Figure 4.  The propagation of the optical soliton in the rang of the transparency window. Wave shape ${|{\varOmega }_{{\rm{p}}1}/{U}_{0}|}^{2}$ as a function of ${z}/{L}_{{\rm{D}}}$ and $ t/{\tau }_{0} $.

    图 5  不同强度的光强下, 探测光$ \left|{\varOmega }_{{\rm{p}}1}{\tau }_{0}\right| $和控制光$ \left|{\varOmega }_{{\rm{c}}1}{\tau }_{0}\right| $随时间$ t $和传播距离$ {z} $的变化情况 (a)弱探测光的存储与读取, $ {\varOmega }_{{\rm{p}}1}(0, t)=2{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right) $; (b)光孤子的存储与读取, $ {\varOmega }_{{\rm{p}}1}(0, t)=8{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right) $; (c)强探测光的存储与读取, $ {\varOmega }_{{\rm{p}}1}(0, t)=14{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right) $. $\left|{\varOmega }_{{\rm{c}}1}{\tau }_{0}\right|$代表控制光的开、关. 线条1—5分别对应于 $z=0, {\rm{ }}5, {\rm{ }}10, {\rm{ }}15, {\rm{ }}20\;{\rm{c}}{\rm{m}}$

    Figure 5.  Time evolution of $ \left|{\varOmega }_{{\rm{p}}1}{\tau }_{0}\right| $ and $ \left|{\varOmega }_{c1}{\tau }_{0}\right| $ as functions of z and t for different input light intensities: (a) Storage and retrieval of a weak probe pulse, with ${\varOmega }_{{\rm{p}}1}(0, t)= $$ 2{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right)$; (b) storage and retrieval of an optical soliton, with $ {\varOmega }_{{\rm{p}}1}(0, t)=8{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right) $; (c) storage and retrieval of a strong probe pulse, with $ {\varOmega }_{{\rm{p}}1}(0, t)=14{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right) $; $ \left|{\varOmega }_{{\rm{c}}1}{\tau }_{0}\right| $ represents the switching off and on of the control pulse. Lines 1 to 5 in each panel correspond to $z=0, {\rm{ }}5, $$ {\rm{ }}10, {\rm{ }}15, {\rm{ }}20\;{\rm{ }}{\rm{c}}{\rm{m}}$, respectively.

    图 6  $ {{\Lambda }} $形三能级量子点EIT构型示意图

    Figure 6.  Schematic diagram of $ {{\Lambda }} $-type three energy level in the quantum dot EIT configuration.

    图 7  在不同强度${\varOmega }_{{\rm{c}}2}$下体系对探测脉冲的吸收谱线图, 其中 ${\gamma }_{32}=3.3\;{\rm{μ}}{\rm{e}}{\rm{V}}$, ${\gamma }_{21}=3.3\times {10}^{-4}\;{\rm{μ }}{\rm{e}}{\rm{V}}$, ${\gamma }_{13}= $$ 1976\;{{\rm{c}}{\rm{m}}}^{-1}\;{\rm{μ}}{\rm{e}}{\rm{V}}$.

    Figure 7.  Linear absorption coefficient $ {K}_{0{\rm{i}}} $as a function of the detuning $ {\Delta }_{{\rm{p}}2} $ with different control fields ${\varOmega }_{{\rm{c}}2},$ other parameters used are ${\gamma }_{32}=3.3\;{\rm{μ}}{\rm{e}}{\rm{V}}$, ${\gamma }_{21}=3.3\times {10}^{-4}\;{\rm{μ}}{\rm{e}}{\rm{V}}$, and ${\gamma }_{13}=1976\;{{\rm{c}}{\rm{m}}}^{-1}{\rm{μ }}{\rm{e}}{\rm{V}}$, respectively.

    图 8  光孤子的存储与读取, ${\varOmega }_{{\rm{p}}2}\left(0, t\right)=16{\rm{sech}}\left(t/{\tau }_{0}\right)$, $\left|{\varOmega }_{{\rm{c}}2}{\tau }_{0}\right|$代表控制光的开、关, 线条1—5分别对应于 $z=0, {\rm{ }}5, $$ {\rm{ }}10, {\rm{ }}15, {\rm{ }}20\;{\rm{c}}{\rm{m}}$

    Figure 8.  Storage and retrieval of optical solitons, ${\varOmega }_{{\rm{p}}2}(0, t)=16{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right)$. $\left|{\varOmega }_{{\rm{c}}2}{\tau }_{0}\right|$ represents the switching off and on of the control pulse. Lines 1 to 5 represent $z=0, {\rm{ }}5, {\rm{ }}10, {\rm{ }}15, {\rm{ }}20\;{\rm{c}}{\rm{m}}$, respectively.

    图 9  $ {\rm{V}} $形三能级量子点EIT构型示意图

    Figure 9.  Schematic diagram of $ {\rm{V}} $-type three energy level in the quantum dot EIT configuration.

    图 10  在不同强度${\varOmega }_{{\rm{c}}3}$下体系对探测光的吸收谱线图, 其中 ${\gamma }_{21}=3.3\;{\rm{μ }}{\rm{e}}{\rm{V}}$, ${\gamma }_{32}=3.3\times {10}^{-4}\;{\rm{μ }}{\rm{e}}{\rm{V}}$, ${\gamma }_{13}= $$ 1976\;{{\rm{c}}{\rm{m}}}^{-1}\cdot{\rm{μ}}{\rm{e}}{\rm{V}}$

    Figure 10.  The linear absorption coefficient $ {K}_{0 i} $as a function of the detuning ${\varDelta }_{{\rm{p}}3}$ with different control fields ${\varOmega }_{{\rm{c}}3},$ where ${\gamma }_{21}=3.3\;{\rm{μ}}{\rm{e}}{\rm{V}}$, ${\gamma }_{32}=3.3\times {10}^{-4}\;{\rm{μ}}{\rm{e}}{\rm{V}}$, and ${\gamma }_{13}= $$ 1976\;{{\rm{c}}{\rm{m}}}^{-1}\cdot{\rm{μ}}{\rm{e}}{\rm{V}}$, respectively.

    Baidu
  • [1]

    Kivshar Y S, Agrawal G 2003 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic Press)

    [2]

    Dauxois T, Peyrard M 2006 Physics of Solitons (Cambridge: Cambridge University Press)

    [3]

    Wang Y, Ding J W, Wang D L, Liu W M 2020 Chaos 30 123133Google Scholar

    [4]

    Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503Google Scholar

    [5]

    Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307Google Scholar

    [6]

    Li Z D, Guo Q Q, Guo Y, He P B, Liu W M 2021 Chin. Phys. B 30 107506Google Scholar

    [7]

    Guo H, Qiu X, Ma Y, Jiang H F, Zhang X F 2021 Chin. Phys. B 30 060310Google Scholar

    [8]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar

    [9]

    Harris S E 1997 Phys. Today 50 36

    [10]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [11]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830Google Scholar

    [12]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617Google Scholar

    [13]

    Li H J, Huang G X 2008 Phys. Lett. A 372 4127Google Scholar

    [14]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [15]

    Dong Y Y, Wang D L, Wang Y, Ding J W 2018 Phys. Lett. A 382 2006Google Scholar

    [16]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [17]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820Google Scholar

    [18]

    Shou C, Huang G X 2019 Phys. Rev. A 99 043821Google Scholar

    [19]

    Chen Z M, Bai Z Y, Li H J, Hang C, Huang G X 2015 Sci. Rep. 5 8211Google Scholar

    [20]

    朱天伟, 徐波, 何军, 赵凤瑷, 张春玲, 谢二庆, 刘峰奇, 王占国 2004 53 301Google Scholar

    Zhu T W, Xu B, He J, Zhao F A, Zhang C L, Xie E Q, Liu F Q, Wang Z G 2004 Acta Phys. Sin. 53 301Google Scholar

    [21]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [22]

    谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲 2018 67 064207Google Scholar

    Tan K B, Lu H M, Guan Q, Zhang G S, Chen C C 2018 Acta Phys. Sin. 67 064207Google Scholar

    [23]

    田芃, 黄黎蓉, 费淑萍, 余奕, 潘彬, 徐巍, 黄德修 2010 59 5738Google Scholar

    Tian P, Huang L R, Fei S P, Y Yi, Pan B, Xu W, Huang D X 2010 Acta Phys. Sin. 59 5738Google Scholar

    [24]

    Hasnain C C J, Cheng P K, Jungho K, Chuang S L 2003 Proc. IEEE 9 1884Google Scholar

    [25]

    Kraus R M, Lagoudakis P G, Rogach A L, Talapin D V, Weller H, Lupton J M, Feldmann J 2007 Phys. Rev. Lett. 98 017401Google Scholar

    [26]

    Krenner H J, Pryor C E, He J, Petroff P M 2008 Nano Lett. 8 1750Google Scholar

    [27]

    Ramsay A J, Boyle S J, Kolodka R S, Oliveira J B B, Szymanska J S, Liu H Y, Hopkinson M, Fox A M, Skolnick M S 2008 Phys. Rev. Lett. 100 197401Google Scholar

    [28]

    唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 66 034202Google Scholar

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar

    [29]

    杨璇, 王胤, 王登龙, 丁建文 2020 69 174203Google Scholar

    Yang X, Wang Y, Wang D L, Ding J W 2020 Acta Phys. Sin. 69 174203Google Scholar

    [30]

    Wang Y, Ding J W, Wang D L 2020 Eur. Phys. J. D 74 190Google Scholar

    [31]

    Zhou S J, Wang D L, Dong Y Y, Bai Z Y, Ding J W 2022 Phys. Lett. A 448 128320Google Scholar

    [32]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar

    [33]

    曾宽宏, 王登龙, 佘彦超, 张蔚曦 2013 62 147801Google Scholar

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta. Phys. Sin. 62 147801Google Scholar

    [34]

    Antón M A, Carreño F, Calderón O G, Melle S 2008 Opt. Commun. 281 3301Google Scholar

    [35]

    Gerardot B D, Brunner D, Dalgarno P A, Karrai K, Badolato A, Petroff P M, Warburton R J 2009 New J. Phys. 11 013028Google Scholar

    [36]

    Khaledi N A, Sabaeian M, Sahrai M, Fallahi V 2014 J. Opt. 16 055004Google Scholar

    [37]

    Ku P C, Hasnain C C J, Chuang S L 2007 J. Phys. D 40 R93Google Scholar

    [38]

    Khursan A A H, Khakani A M K, Mossawi A K H 2009 Photon. Nanostruct. Fundam. Appl. 7 153Google Scholar

    [39]

    Abdullah M, Noori F T M, Khursan A A H 2015 Superlattices Microstruct. 82 219Google Scholar

    [40]

    Houmark J, Nielsen T R, Mørk J, Jauho A P 2009 Phys. Rev. B 79 115420Google Scholar

  • [1] Tan Cong, Wang Deng-Long, Dong Yao-Yong, Ding Jian-Wen. Storage and retrieval of solitons in electromagnetically induced transparent system of V-type three-level diamond nitrogen-vacancy color centers. Acta Physica Sinica, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [3] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [4] Jia Yue1\2, Chen Xiao-Han1\2, Zhang Hao1\2, Zhang Lin-Jie1\2, Xiao Lian-Tuan1\2, Jia Suo-Tang1\2Noise transfer characteristics of Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [5] Yang Guang, Wang Jie, Wang Jun-Min. Determination of the hyperfine coupling constants of the 5D5/2 state of 85Rb atoms by using high signal-to-noise ratio electromagnetically-induced transparency spectra. Acta Physica Sinica, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [6] Ning Ren-Xia, Bao Jie, Jiao Zheng. Wide band electromagnetically induced transparency in graphene metasurface of composite structure. Acta Physica Sinica, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [7] Tang Hong, Wang Deng-Long, Zhang Wei-Xi, Ding Jian-Wen, Xiao Si-Guo. Controlling of dark or bright soliton type in a cascade-type electromagnetically induced transparency semiconductor quantum well by the coupling longitudinal optical phonons. Acta Physica Sinica, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [8] Lu He-Lin, Du Chun-Guang. Coherent control of whispering-gallery-mode optomechanical microresonators and perfect transparency. Acta Physica Sinica, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [9] Chen Qiu-Cheng. Nonlinear Faraday rotation in electromagnetically induced transparency medium of semiconductor three quantum dots. Acta Physica Sinica, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [10] Du Ying-Jie, Xie Xiao-Tao, Yang Zhan-Ying, Bai Jin-Tao. Dark soliton in the system of electromagnetically induced transparency. Acta Physica Sinica, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [11] Li Xiao-Li, Shang Ya-Xuan, Sun Jiang. Splitting of electromagnetically induced transparency window and appearing of gain due to radio frequency field. Acta Physica Sinica, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [12] Zeng Kuan-Hong, Wang Deng-Long, She Yan-Chao, Zhang Wei-Xi. Spatial optical soliton pairs in a quantum dot with exciton-biexciton coherence. Acta Physica Sinica, 2013, 62(14): 147801. doi: 10.7498/aps.62.147801
    [13] Li Qin, Guo Hong. The propagation properties of broadband pulse. Acta Physica Sinica, 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [14] Lü Chun-Hai, Tan Wen-Ting, Tan Lei. Electromagnetically induced transparency in squeezed vacuum. Acta Physica Sinica, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [15] Li Xiao-Li, Zhang Lian-Shui, Yang Bao-Zhu, Yang Li-Jun. Electromagnetically induced absorption and transparency in a closed lambda-shaped four-level system. Acta Physica Sinica, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [16] Liu Yu-Min, Yu Zhong-Yuan, Ren Xiao-Min. Effects of the thickness of spacing layer and capping layer on the strain distribution and wavelength emission of InAs/GaAs quantum dot. Acta Physica Sinica, 2009, 58(1): 66-72. doi: 10.7498/aps.58.66
    [17] Zhang Lian-Shui, Li Xiao-Li, Wang Jian, Yang Li-Jun, Feng Xiao-Min, Li Xiao-Wei, Fu Guang-Sheng. Electromagnetically induced absorption and electromagnetically induced transparency in an optical-radio two-photon coupling configuration. Acta Physica Sinica, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [18] Liu Shao-Ding, Cheng Mu-Tian, Zhou Hui-Jun, Li Yao-Yi, Wang Qu-Quan, Xue Qi-Kun. The effect of biexciton, wetting layer leakage and Auger capture on Rabi oscillation damping in quantum dots. Acta Physica Sinica, 2006, 55(5): 2122-2127. doi: 10.7498/aps.55.2122
    [19] Yang Li-Jun, Zhang Lian-Shui, Li Xiao-Li, Li Xiao-Wei, Guo Qing-Lin, Han Li, Fu Guang-Sheng. Multi-window frequency-tunable electromagnetically induced transparency. Acta Physica Sinica, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] Li Yao-Yi, Cheng Mu-Tian, Zhou Hui-Jun, Liu Shao-Ding, Wang Qu-Quan, Xue Qi-Kun. Efficiency of single photon emission in three-level system of semiconductor quantum dots with pulsed excitation. Acta Physica Sinica, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
Metrics
  • Abstract views:  3175
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2022
  • Accepted Date:  19 February 2023
  • Available Online:  28 February 2023
  • Published Online:  20 April 2023

/

返回文章
返回
Baidu
map