搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纵波光学声子耦合驰豫对GaAs/AlGaAs量子阱EIT介质中光孤子存取的调幅效应

王胤 胡明君 陈桥 邓永和

引用本文:
Citation:

纵波光学声子耦合驰豫对GaAs/AlGaAs量子阱EIT介质中光孤子存取的调幅效应

王胤, 胡明君, 陈桥, 邓永和

Controlling amplitude of the storage and retrieval of the optical soliton in GaAs/AlGaAs quantum well EIT medium by the cross-coupling relaxation of the longitudinal-optical phonons

Wang Yin, Hu Ming-Jun, Chen Qiao, Deng Yong-He
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 实验已成功在GaAs/AlGaAs双量子阱的导带能级间嵌入纵波光学声子交叉耦合驰豫,因而本文构建考虑纵波光学声子耦合驰豫的N型四能级双量子阱电磁诱导透明介质模型,进而研究弱探测光在其中的线性吸收和非线性传播性质。结果表明,当两束控制光均开启时,调节纵波光学声子耦合强度,体系会出现近似完美对称的双透明窗口。在非线性情况下,仅计及低阶效应体系形成的光孤子并不能稳定传播;只有计及高阶效应后,体系所形成的光孤子才能长距离稳定传播。值得一提是,体系所形成的光孤子可通过关闭和开启控制光实现高保真度的存取。有趣的是,所存取光孤子的振幅随纵波光学声子耦合强度的增大而降低,这说明半导体量子阱器件可操控纵波光学声子耦合强度去调节光信息存取的振幅。
    Optical fields, as a type of information carrier, travels fast and can carry a large of information in quantum information processing and transmission. Therefore, it’s concerned for the storage and retrieval of the quantum information. However, in the process of optical field propagation, its dispersion and diffraction effect cause distortion of quantum information in a certain range. Comparing with light, the optical solitons, which are from the balance between dispersion (diffraction) and nonlinearity of the system, possess higher stability and higher fidelity as the information carries, so that it has gained considerable attention in ultra-cold atomic and semiconductor quantum dots electromagnetically induced transparency (EIT) media and so on. Till now, there are few reports on the storage and retrieval of optical solitons in the semiconductor quantum wells system.
    Based on this, we, in this paper, construct an N-type four-level asymmetrical GaAs/AlGaAs double quantum well EIT model with the cross-coupling relaxation of the longitudinal-optical phonons. Of course, the cross-coupling relaxation of the longitudinal-optical phonons between the conduction band levels of the GaAs/AlGaAs double quantum wells have been successfully embedded in the experiments. Subsequently, we study its linear absorption and nonlinear propagation properties by applying the semi-classical theory and the multi-scale method combined with numerical simulation. It is shown that when both control fields are turned on, there exhibits double transparent windows in the linear case. Interestingly, when the strength of the cross-coupling relaxation of the longitudinal-optical phonons increases, there occurs an approximately perfectly symmetrical double transparent window in the system.
    For the nonlinear case, the optical solitons cannot propagate stably under the consideration of the third order of the multi-scale expansion,. Only after the forth order of the multi-scale expansion are considered, the optical solitons formed can propagate stably. It is worth mentioning that only higher-order optical solitons can be stored and retrieved by switching off and on the control fields. Furthermore, numerical simulation shows that the fidelity of the storage and retrieval of the optical soliton is higher than that of ordinary optical pulse. In addition, it is found that the amplitude of the stored optical soliton can be controlled by the strength of the cross-coupling relaxation of the longitudinal-optical phonons. These results are possibility to improve the fidelity for the storage and retrieval of quantum information in semiconductor quantum wells devices.
  • [1]

    Wang Y, Ding J W, Wang D L, Liu W M 2020 Chaos 30 123133

    [2]

    Wang D L, Yan X H, Liu W M 2008 Phy. Rev. E 78 026606

    [3]

    Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503

    [4]

    Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307

    [5]

    Dong Y Y, Zheng X J, Wang D L, Ding J W, 2021 Opt. Express 29 5367

    [6]

    Li Z D, Guo Q Q, Guo Y, He P B, Liu W M 2021 Chin. Phys. B 30 107506

    [7]

    Guo H, Qiu X, Ma Y, Jiang H F, Zhang X F 2021 Chin. Phys. B 30 060310

    [8]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504

    [9]

    Zhang L Y, Xie X Y, 2024 Chin. Phy. B 33 090207

    [10]

    Shi Z Y, Qin L, Zhou Y, Zhong Y, Wang G H, Huang H B, 2024 Phys. Rev. A 110 023513

    [11]

    Huang X J, Xiao L, Wang K K, Xue P, 2024 Phys. Rev. A 110 053717

    [12]

    Kivshar Y S, Agrawal G 2003 Optical solitons: from fibers to photonic crystals (Academic press)

    [13]

    Dauxois T, Peyrard M 2006 Physics of Solitons (Cambridge University Press, Cambridge)

    [14]

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 147801 (in Chinese) [曾宽宏,王登龙,佘彦超,张蔚曦 2013 62 147801]

    [15]

    Dong Y Y, Wang D L, Wang Y, Ding J W 2018 Phys. Lett. A 382 2006

    [16]

    Wang Y, Wang R Y, Chen Q, Deng Y H 2024 Acta Phys. Sin.73 044202 (in Chinese) [王胤, 王壬颍, 陈桥, 邓永和 2024 73 044202]

    [17]

    Tan C, Wang D L, Dong Y Y, Ding J W 2024 Acta Phy. Sin. 73, 107601 (in Chinese) [谭聪,王登龙,董耀勇,丁建文 2024 73 107601]

    [18]

    Zhou S J, Wang D L, Dong Y Y, Bai Z Y, Ding J W 2022 Phys. Lett. A 448 128320

    [19]

    Wang Y, Zhou S J, Chen Q, Deng Y H 2023 Acta Phys. Sin.72 08204 (in Chinese)[王胤, 周驷杰, 陈桥, 邓永和2023 72 084204]

    [20]

    Yang X, Wang Y, Wang D L, Ding J W 2020 Acta Phys. Sin.69 174203 (in Chinese)[杨璇, 王胤, 王登龙, 丁建文 2020 69 174203]

    [21]

    Wang Y, Zhou S J, Deng Y H,Chen Q 2023 Chin. Phys. B, 32 054203

    [22]

    Wang Y, Ding J W, Wang D L 2020 Eur. Phys. J. D 74 190

    [23]

    Harris S E 1997 Phys. Today 50 36

    [24]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [25]

    Wu Y, Deng L 2004 Opt. Lett. 29 2064

    [26]

    Wu Y, Deng L2004 Phys. Rev. Lett. 93 143904

    [27]

    Bai Z Y, Hang C, Huang G X. 2013 Chin. Opt. Lett. 11 012701

    [28]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835

    [29]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820

    [30]

    Phillips M, Wang H L 2003 Opt. Lett. 28 831

    [31]

    Li J H. 2007 Phys. Rev. B 75 155329

    [32]

    Wang Z P 2009 Opt. Commun. 282 4745

    [33]

    Yang W X, Lee R K 2008 Opt. Express 16 17161

    [34]

    Neogi A, Yoshida H, Mozume T, Wada O 1999 Opt. Commun. 159 225

    [35]

    Wu J H, Gao J Y, Xu J H, Silvestri L, Artoni M, Rocca G CL, Bassani F 2005 Phys. Rev. Lett. 95 057401

    [36]

    Zhu C J, Huang G X 2009 Phys. Rev. B 80 235408

    [37]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [38]

    Tang H, Wang D L, She Y C, Ding J W, Xiao S G 2016 Eur. Phys. J. D 70 22

    [39]

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta Phys. Sin. 66 034202 (in Chinese)[唐宏, 王登龙, 张蔚曦,丁建文,肖思国 2017 66 034202]

    [40]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [41]

    Huang G X, Jiang K J, Payne M G, Deng L 2006 Phys. Rev. E 73 056606

    [42]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830

    [43]

    Cardona M, Merlin R. 2006 Light Scattering in Solids IX: Novel Materials and Techniques (New York, Springer Science & Business Media)

    [44]

    Neogi A 1997 Opt. Commun. 133 479

    [45]

    Neogi A, Yoshida H, Mozume T, et al 1999 Opt. Commun. 159 225

    [46]

    Xue Y, Su X M, Wang G, Chen Y, Gao J Y 2005 Opt. Commun. 249 231

    [47]

    Wang Z G, Zheng Z R, Yu J H 2007 Phys. Lett. A 370 113

    [48]

    Luo T T, Wang D L, She Y C, Ding J W, Xiao S G 2016 Acta Optica Sinica 36 0227001 (in Chinese)[罗婷婷, 王登龙, 佘彦超, 丁建文,肖思国 2016 光学学报36 0227001]

    [49]

    Hu M J, Wang D L, Dong Y Y, Ding J W 2023 Acta Optica Sinica 43 1919001 (in Chinese)[胡明君,王登龙,董耀勇,丁建文 2023光学学报43 1919001]

    [50]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 017392

  • [1] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德伯原子电场量子测量方法及激光偏振影响分析.  , doi: 10.7498/aps.74.20241362
    [2] 段昊男, 姬中华, 刘伟新, 苏殿强, 李经宽, 赵延霆. 射频场缀饰的直流电场Floquet-电磁诱导透明光谱特性研究.  , doi: 10.7498/aps.74.20250052
    [3] 盖云冉, 郑康, 丁春玲, 郝向英, 金锐博. 基于半导体量子阱中四波混频效应的高效光学非互易.  , doi: 10.7498/aps.73.20231212
    [4] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取.  , doi: 10.7498/aps.73.20232006
    [5] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响.  , doi: 10.7498/aps.72.20221965
    [6] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , doi: 10.7498/aps.70.20210102
    [7] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , doi: 10.7498/aps.67.20180114
    [8] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性.  , doi: 10.7498/aps.67.20181168
    [9] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数.  , doi: 10.7498/aps.66.103201
    [10] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究.  , doi: 10.7498/aps.66.100202
    [11] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控.  , doi: 10.7498/aps.66.034202
    [12] 陆赫林, 杜春光. 回音壁微腔光力系统的相干控制与完全相干透射.  , doi: 10.7498/aps.65.214204
    [13] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子.  , doi: 10.7498/aps.64.064202
    [14] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现.  , doi: 10.7498/aps.62.064202
    [15] 李琴, 郭红. 宽频脉冲光的传播特性.  , doi: 10.7498/aps.60.054204
    [16] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明.  , doi: 10.7498/aps.60.024204
    [17] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收.  , doi: 10.7498/aps.59.7008
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收.  , doi: 10.7498/aps.57.4921
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究.  , doi: 10.7498/aps.55.5206
    [20] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株. 量子阱中电子自旋注入及弛豫的飞秒光谱研究.  , doi: 10.7498/aps.53.3196
计量
  • 文章访问数:  99
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-02

/

返回文章
返回
Baidu
map