Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear Faraday rotation in electromagnetically induced transparency medium of semiconductor three quantum dots

Chen Qiu-Cheng

Citation:

Nonlinear Faraday rotation in electromagnetically induced transparency medium of semiconductor three quantum dots

Chen Qiu-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the past few years, many interesting optical phenomena, such as electromagnetically induced transparency, coherent optical control of a biexciton, slow light and optical solitons, have been investigated in single quantum dot (QD). However, in an actual semiconductor device there exist many quantum dots (QDs). Recently, QD molecule, which is comprised of double semiconductor QDs coupled by tunneling coupling, has been proposed. In this new semiconductor structure, many complex but interesting phenomena have been discovered. In fact, three QD molecules may also be composed of three QDs, which can be coupled by interdot tunneling coupling. For the three semiconductor QDs molecules, the influence of the interdot tunneling coupling strength must be considered. So, in this paper, with considering that a weak, -linear-polarized probe field can form left- and right-polarized components under the control of the parallel magnetic field, and when they are combined with the tunneling coupling among the QDs, an electromagnetically induced transparency medium of a five-level M configuration semiconductor three QDs is proposed. Subsequently, the nonlinear Faraday rotation in the semiconductor three QDs is analytically studied. For the linear case, the linear dispersion relation is driven by a method of multiple scales. Then, by studying the linear optical properties, it is found that the system exhibits a single tunneling induced transparency window due to the quantum destructive interference effect driven by the interdot tunneling coupling under appropriate conditions, and the width of the tunneling induced transparency window can be effectively controlled by the strength of the interdot tunneling coupling. Meanwhile, the switch regulatory effect, which changes from the anomalous dispersion regime to the normal dispersion regime, is likely to be achieved by changing the strength of the interdot tunneling coupling. For the nonlinear case, two coupled nonlinear Schrdinger equations, which govern the evolutions of left- and right-polarized components of the weak, -linear-polarized probe field under the applied longitudinal magnetic field, are derived. By studying the nonlinear properties, it is shown that a large nonlinear Faraday rotation angle can be obtained due to the quantum interference effect which is induced by the interdot tunneling coupling with a very low absorption of the weak, -linear-polarized probe field. In addition, it is also found that the nonlinear Faraday rotation direction is opposite to line Faraday rotation for the same magnetic field. What is more, the nonlinear Faraday rotation angle grows bigger than the linear Faraday rotation. These results mean that the Faraday rotation of the three semiconductor QDs with the electromagnetically induced transparency can be more effectively controlled by the nonlinear effect.
      Corresponding author: Chen Qiu-Cheng, chenqiucheng68@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11247313).
    [1]

    Faraday M 1846 Philos. Mag. 28 294

    [2]

    Wang B, Li S J, Ma J, Wang H, Peng K C, Xiao M 2006 Phys. Rev. A 73 051801

    [3]

    Peng Z H, Zou J, Liu X J, Xiao Y J, Kuang L M 2012 Phys. Rev. A 86 034305

    [4]

    Liu Q, Gross S, Dekker P, Withford M J, Steel M J 2014 Opt. Express 22 28037

    [5]

    Yu Z, Fan S 2009 Nat. Photon. 3 91

    [6]

    Hang C, Huang G X 2007 Chin. Opt. Lett. 5 47

    [7]

    Zhu C J, Deng L, Hagley E W 2013 Phys. Rev. A 88 023854

    [8]

    He Y M, Wei Y J, He Y, Xiong F L, Chen K, Zhao Y, Lu Z Y 2014 Sci. Sin. Inform. 44 394 (in Chinese)[何玉明, 魏宇佳, 贺煜, 熊飞雷, 陈凯, 赵勇, 陆朝阳2014中国科学信息科学 44 394]

    [9]

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 147801 (in Chinese)[曾宽宏, 王登龙, 佘彦超, 张蔚曦2013 62 147801]

    [10]

    Bai Y F, Yang W X, Han D A, Yu X Q 2012 Chin. Phys. B 21 114208

    [11]

    Hao X Y, Zheng A S, Wang Y, Li X G 2012 Commun. Theor. Phys. 57 866

    [12]

    Wu Y, Yang X X 2007 Phys. Rev. B 76 054425

    [13]

    Tian S C, Wan R G, Tong C Z, Ning Y Q 2014 J. Opt. Soc. Am. B 31 2681

    [14]

    Ding C L, Yu R, Li J H, Hao X Y, Wu Y 2014 Phys. Rev. A 90 043819

    [15]

    Borges H S, Sanz L, Villas-Boas J M, Diniz Neto O O, Alcalde A M 2012 Phys. Rev. B 85 115425

    [16]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830

    [17]

    Sun H, Fan S L, Feng X L, Wu C F, Gong S Q, Huang G X, Oh C H 2012 Opt. Express 20 8485

    [18]

    Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604

    [19]

    Vaseghi B, Mohebi N 2013 J. Lumin. 134 352

    [20]

    Songmuang R, Kiravittaya S, Schmidt O G 2003 Appl. Phys. Lett. 82 2892

    [21]

    Beirne G J, Hermannstädter C, Wang L, Rastelli A, Schmidt O G, Michler P 2006 Phys. Rev. Lett. 96 137401

    [22]

    Yang W, Sun D L, Zhou L, Wang J, Zhan M S 2014 Acta Phys. Sin. 63 153701(in Chinese)[杨威, 孙大立, 周林, 王谨, 詹明生2014 63 153701]

    [23]

    Chen Q C 2014 Chin. Phys. B 23 124212

    [24]

    Yang W X, Lee R K 2008 Europhys. Lett. 83 14002

    [25]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392

    [26]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820

    [27]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [28]

    She Y C, Zhang W X, Wang D L 2011 Acta Phys. Sin. 60 064205 (in Chinese)[佘彦超, 张蔚曦, 王登龙2011 60 064205]

    [29]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D 1996 Science 273 87

  • [1]

    Faraday M 1846 Philos. Mag. 28 294

    [2]

    Wang B, Li S J, Ma J, Wang H, Peng K C, Xiao M 2006 Phys. Rev. A 73 051801

    [3]

    Peng Z H, Zou J, Liu X J, Xiao Y J, Kuang L M 2012 Phys. Rev. A 86 034305

    [4]

    Liu Q, Gross S, Dekker P, Withford M J, Steel M J 2014 Opt. Express 22 28037

    [5]

    Yu Z, Fan S 2009 Nat. Photon. 3 91

    [6]

    Hang C, Huang G X 2007 Chin. Opt. Lett. 5 47

    [7]

    Zhu C J, Deng L, Hagley E W 2013 Phys. Rev. A 88 023854

    [8]

    He Y M, Wei Y J, He Y, Xiong F L, Chen K, Zhao Y, Lu Z Y 2014 Sci. Sin. Inform. 44 394 (in Chinese)[何玉明, 魏宇佳, 贺煜, 熊飞雷, 陈凯, 赵勇, 陆朝阳2014中国科学信息科学 44 394]

    [9]

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 147801 (in Chinese)[曾宽宏, 王登龙, 佘彦超, 张蔚曦2013 62 147801]

    [10]

    Bai Y F, Yang W X, Han D A, Yu X Q 2012 Chin. Phys. B 21 114208

    [11]

    Hao X Y, Zheng A S, Wang Y, Li X G 2012 Commun. Theor. Phys. 57 866

    [12]

    Wu Y, Yang X X 2007 Phys. Rev. B 76 054425

    [13]

    Tian S C, Wan R G, Tong C Z, Ning Y Q 2014 J. Opt. Soc. Am. B 31 2681

    [14]

    Ding C L, Yu R, Li J H, Hao X Y, Wu Y 2014 Phys. Rev. A 90 043819

    [15]

    Borges H S, Sanz L, Villas-Boas J M, Diniz Neto O O, Alcalde A M 2012 Phys. Rev. B 85 115425

    [16]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830

    [17]

    Sun H, Fan S L, Feng X L, Wu C F, Gong S Q, Huang G X, Oh C H 2012 Opt. Express 20 8485

    [18]

    Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604

    [19]

    Vaseghi B, Mohebi N 2013 J. Lumin. 134 352

    [20]

    Songmuang R, Kiravittaya S, Schmidt O G 2003 Appl. Phys. Lett. 82 2892

    [21]

    Beirne G J, Hermannstädter C, Wang L, Rastelli A, Schmidt O G, Michler P 2006 Phys. Rev. Lett. 96 137401

    [22]

    Yang W, Sun D L, Zhou L, Wang J, Zhan M S 2014 Acta Phys. Sin. 63 153701(in Chinese)[杨威, 孙大立, 周林, 王谨, 詹明生2014 63 153701]

    [23]

    Chen Q C 2014 Chin. Phys. B 23 124212

    [24]

    Yang W X, Lee R K 2008 Europhys. Lett. 83 14002

    [25]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392

    [26]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820

    [27]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [28]

    She Y C, Zhang W X, Wang D L 2011 Acta Phys. Sin. 60 064205 (in Chinese)[佘彦超, 张蔚曦, 王登龙2011 60 064205]

    [29]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D 1996 Science 273 87

  • [1] Xia Gang, Zhang Ya-Peng, Tang Jing-Wen, Li Chun-Yan, Wu Chun-Wang, Zhang Jie, Zhou Yan-Li. Metastable dynamics of Rydberg atomic system under electromagnetically induced transparency. Acta Physica Sinica, 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] Zhou Fei, Jia Feng-Dong, Liu Xiu-Bin, Zhang Jian, Xie Feng, Zhong Zhi-Ping. Measurement of microwave electric field based on electromagnetically induced transparency by using cold Rydberg atoms. Acta Physica Sinica, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] Wang Yin, Zhou Si-Jie, Chen Qiao, Deng Yong-He. Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium. Acta Physica Sinica, 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [4] Pei Li-Ya, Zheng Shi-Yang, Niu Jin-Yan. Λ-type electromagnetically induced transparency and absorption by controlling atomic coherence. Acta Physica Sinica, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [5] Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian. Phase in Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [6] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field. Acta Physica Sinica, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [7] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of Rydberg atoms in modulated laser fields. Acta Physica Sinica, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [8] Bai Jin-Hai, Lu Xiao-Gang, Miao Xing-Xu, Pei Li-Ya, Wang Meng, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Fu Pan-Ming, Zuo Zhan-Chun. Analysis on the absorption curve asymmetry of electromagnetically induced transparency in Rb87 cold atoms. Acta Physica Sinica, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [9] Wang Meng, Bai Jin-Hai, Pei Li-Ya, Lu Xiao-Gang, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Yang Shi-Ping, Pang Zhao-Guang, Fu Pan-Ming, Zuo Zhan-Chun. Electromagnetically induced transparency in a near-resonance coupling field. Acta Physica Sinica, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [10] Zeng Kuan-Hong, Wang Deng-Long, She Yan-Chao, Zhang Wei-Xi. Spatial optical soliton pairs in a quantum dot with exciton-biexciton coherence. Acta Physica Sinica, 2013, 62(14): 147801. doi: 10.7498/aps.62.147801
    [11] Zhao Hu, Li Tie-Fu, Liu Jian-She, Chen Wei. Progress of electromagnetically induced transparency based on superconducting qubits. Acta Physica Sinica, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [12] Yang Bao-Dong, Gao Jing, Wang Jie, Zhang Tian-Cai, Wang Jun-Min. Multiple electromagnetically-induced transparency of hyperfine levels in cesium 6S1/2 -6P3/2 -8S1/2 ladder-type system. Acta Physica Sinica, 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [13] She Yan-Chao, Zhang Wei-Xi, Wang Deng-Long. Nonlinear Faraday rotation in electromagnetically induce transparency medium. Acta Physica Sinica, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [14] She Yan-Chao, Wang Deng-Long, Ding Jian-Wen. Spatial weak-light ring dark solitons in an electromagnetically induced transparency medium. Acta Physica Sinica, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [15] Zhuang Fei, Shen Jian-Qi, Ye Jun. Controlling the photonic bandgap structures via manipulation of refractive index of electromagnetically induced transparency vapor. Acta Physica Sinica, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [16] Li Yao-Yi, Cheng Mu-Tian, Zhou Hui-Jun, Liu Shao-Ding, Wang Qu-Quan, Xue Qi-Kun. Efficiency of single photon emission in three-level system of semiconductor quantum dots with pulsed excitation. Acta Physica Sinica, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [17] Yao Ming, Zhu Ka-Di, Yuan Xiao-Zhong, Jiang Yi-Wen, Wu Zhuo-Jie. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems. Acta Physica Sinica, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] Liu Zheng-Dong, Wu Qiang. Electromagnetically induced transparency in a four-level atomic system driven by three coupled fields. Acta Physica Sinica, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [19] Zhao Jian-Ming, Zhao Yan-Ting, Huang Tao, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation of electromagnetically induced transparency with double-pumping lasers. Acta Physica Sinica, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [20] Li Yong-Fang, Sun Jian-Feng. Ultra-narrow electromagnetically induced transparency and inversionless gain in a ladder-four-level system. Acta Physica Sinica, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
Metrics
  • Abstract views:  6239
  • PDF Downloads:  158
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2016
  • Accepted Date:  23 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回
Baidu
map