搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计及激子-双激子相干下半导体单量子点中的空间光孤子对

曾宽宏 王登龙 佘彦超 张蔚曦

引用本文:
Citation:

计及激子-双激子相干下半导体单量子点中的空间光孤子对

曾宽宏, 王登龙, 佘彦超, 张蔚曦

Spatial optical soliton pairs in a quantum dot with exciton-biexciton coherence

Zeng Kuan-Hong, Wang Deng-Long, She Yan-Chao, Zhang Wei-Xi
PDF
导出引用
  • 考虑激子-双激子的相干效应, 解析地研究了半导体单量子点中探测光和信号光的吸收特性和非线性传播特性.结果发现, 在线性条件下, 单量子点中出现电磁感应透明现象; 进一步分析可得, 电磁感应透明所呈现的是单窗口或双窗口或光学增益均可通过调节控制光强加以控制.在非线性条件下, 弱信号光诱导弱探测光产生两个分量, 这两个分量在系统中所激发的自克尔和交叉克尔 非线性效应与系统的衍射效应相平衡从而形成稳定的亮-亮, 亮-暗, 暗-暗等空间光孤子对.
    Considering the exciton-biexciton coherence, we analytically study the linear absorption and nonlinear propagation properties of the probe and signal field in a semiconductor quantum dot. It is found that in the linear case, in the system takes place an electromagnetically induced transparency phenomenon. Furthermore, we obtain that in the system there occurs one- or two-transparency window, or optical gain, which is controlled by adjusting the coupling control field. For the nonlinear case, the weak probe field, which is induced by a signal field, splits into two parts. When their excited self-Kerr and cross-Kerr nonlinear effects balance the refractive effect of the beam, the system exhibits bright-bright, bright-dark, dark-bright, dark-dark soliton pairs.
    • 基金项目: 国家自然科学基金(批准号: 51032002); 湖南省教育厅研究基金(批准号: 12A140)和 贵州省科技厅科学技术基金(批准号: J20112219, J20122314)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51032002), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 12A140), and the Science and Technology Foundation of Guizhou Province of China (Grant Nos. J20112219, J20122314).
    [1]

    Segev M 1998 Opt. Quantum Electron. 30 503

    [2]

    Segev M,Stegeman G I 1998 Phys. Today 51 48

    [3]

    Chen Z G, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401

    [4]

    Hang C, Konotop V V, Huang G X 2009 Phys. Rev. A 79 033826

    [5]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [6]

    Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842

    [7]

    Kivshar Y S, Yang X P 1994 Phys. Rev. E 50 40(R)

    [8]

    Hang C, Huang G X, Deng L 2006 Phys. Rev. E 74 046601

    [9]

    Hu B, Huang G X, Velarde M G 2000 Phys. Rev. E 62 2827

    [10]

    Stegeman G I, Segev M 1999 Science 286 1518

    [11]

    Kang J U, Stegeman G I, Aitchison J S, Akhmediev N 1996 Phys. Rev. Lett. 76 3699

    [12]

    Zhang H, Tang D Y, Zhao L M, Wu X 2009 Phys. Rev. B 80 052302

    [13]

    Delqué M, Sylvestre T, Maillotte H, Cambournac C, Kockaert P, Haelterman M 2005 Opt. Lett. 30 3383

    [14]

    Zhang Y, Hou C F, Sun X D 2007 Chin. Phys. 16 159

    [15]

    Liu J S, Zhang D Y, Liang C H 2000 Chin. Phys. 9 667

    [16]

    Chen Z G, Segev M, Coskun T H, Christodoulides D N 1996 Opt. Lett. 21 1436

    [17]

    Huang G X, Jiang K J, Payne M G, Deng L 2006 Phys. Rev. E 73 056606

    [18]

    Xie X T, Li W B, Yang X X 2006 J. Opt. Soc. Am. B 23 1609

    [19]

    She Y C, Wang D L, Ding J W 2009 Acta Phys. Sin. 58 3198 (in Chinese) [佘彦超, 王登龙, 丁建文 2009 58 3198]

    [20]

    She Y C, Zhang W X, Wang D L 2011 Acta Phys. Sin. 60 064205 (in Chinese) [佘彦超, 张蔚曦, 王登龙 2011 60 064205]

    [21]

    Si L G, Yang W X, Yang X X 2009 J. Opt. Soc. Am. B 26 478

    [22]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904

    [23]

    Wu Y 2005 Phys. Rev. A 71 053820

    [24]

    Wu Y, Deng L 2004 Opt. Lett. 29 2064

    [25]

    Ding C L, Hao X Y, Yang X X 2010 Phys. Lett. A 374 680

    [26]

    Hao X Y, Zheng A T, Wang Y, Li X G 2012 Commun. Theor. Phys. 57 866

    [27]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835

    [28]

    Li J H, Yu R, Huang P, Yang X X 2009 Phys. Lett. A 373 554

    [29]

    Sun H, Feng X L, Gong S Q, Oh C H 2009 Phys. Rev. B 79 193404

    [30]

    Luo J, Lai W, Lu D, Du C L, Liu Y W, Gong S Q, Shi D N, Guo C L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035402

    [31]

    Wu F, Tian W, Ma i N, Chen W J, Zhang G L, Zhao G F, Cao S D, Xie W 2008 Chin. Phys. Lett. 25 1461

    [32]

    Guo R H, Shi H Y, Sun X D 2004 Chin. Phys. 13 2141

    [33]

    Zhang G Q, Chen C, Gao F, Bo F, Liu J B, Xu J J, Tu Y F 2007 Physics 36 399

    [34]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D 1996 Science 273 87

    [35]

    Brunner K, Abstreiter G, Böhm G, Tränkle, Weimann G 1994 Phys. Rev. Lett. 73 1138

    [36]

    Luo B, Hang C, Li H J, Huang G X 2010 Chin. Phys. B 19 054214

    [37]

    Li L, Huang G X 2010 Phys. Rev. A 82 023809

    [38]

    Li H J, Huang G X 2008 Phys. Lett. A 372 4127

  • [1]

    Segev M 1998 Opt. Quantum Electron. 30 503

    [2]

    Segev M,Stegeman G I 1998 Phys. Today 51 48

    [3]

    Chen Z G, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401

    [4]

    Hang C, Konotop V V, Huang G X 2009 Phys. Rev. A 79 033826

    [5]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [6]

    Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842

    [7]

    Kivshar Y S, Yang X P 1994 Phys. Rev. E 50 40(R)

    [8]

    Hang C, Huang G X, Deng L 2006 Phys. Rev. E 74 046601

    [9]

    Hu B, Huang G X, Velarde M G 2000 Phys. Rev. E 62 2827

    [10]

    Stegeman G I, Segev M 1999 Science 286 1518

    [11]

    Kang J U, Stegeman G I, Aitchison J S, Akhmediev N 1996 Phys. Rev. Lett. 76 3699

    [12]

    Zhang H, Tang D Y, Zhao L M, Wu X 2009 Phys. Rev. B 80 052302

    [13]

    Delqué M, Sylvestre T, Maillotte H, Cambournac C, Kockaert P, Haelterman M 2005 Opt. Lett. 30 3383

    [14]

    Zhang Y, Hou C F, Sun X D 2007 Chin. Phys. 16 159

    [15]

    Liu J S, Zhang D Y, Liang C H 2000 Chin. Phys. 9 667

    [16]

    Chen Z G, Segev M, Coskun T H, Christodoulides D N 1996 Opt. Lett. 21 1436

    [17]

    Huang G X, Jiang K J, Payne M G, Deng L 2006 Phys. Rev. E 73 056606

    [18]

    Xie X T, Li W B, Yang X X 2006 J. Opt. Soc. Am. B 23 1609

    [19]

    She Y C, Wang D L, Ding J W 2009 Acta Phys. Sin. 58 3198 (in Chinese) [佘彦超, 王登龙, 丁建文 2009 58 3198]

    [20]

    She Y C, Zhang W X, Wang D L 2011 Acta Phys. Sin. 60 064205 (in Chinese) [佘彦超, 张蔚曦, 王登龙 2011 60 064205]

    [21]

    Si L G, Yang W X, Yang X X 2009 J. Opt. Soc. Am. B 26 478

    [22]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904

    [23]

    Wu Y 2005 Phys. Rev. A 71 053820

    [24]

    Wu Y, Deng L 2004 Opt. Lett. 29 2064

    [25]

    Ding C L, Hao X Y, Yang X X 2010 Phys. Lett. A 374 680

    [26]

    Hao X Y, Zheng A T, Wang Y, Li X G 2012 Commun. Theor. Phys. 57 866

    [27]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835

    [28]

    Li J H, Yu R, Huang P, Yang X X 2009 Phys. Lett. A 373 554

    [29]

    Sun H, Feng X L, Gong S Q, Oh C H 2009 Phys. Rev. B 79 193404

    [30]

    Luo J, Lai W, Lu D, Du C L, Liu Y W, Gong S Q, Shi D N, Guo C L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035402

    [31]

    Wu F, Tian W, Ma i N, Chen W J, Zhang G L, Zhao G F, Cao S D, Xie W 2008 Chin. Phys. Lett. 25 1461

    [32]

    Guo R H, Shi H Y, Sun X D 2004 Chin. Phys. 13 2141

    [33]

    Zhang G Q, Chen C, Gao F, Bo F, Liu J B, Xu J J, Tu Y F 2007 Physics 36 399

    [34]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D 1996 Science 273 87

    [35]

    Brunner K, Abstreiter G, Böhm G, Tränkle, Weimann G 1994 Phys. Rev. Lett. 73 1138

    [36]

    Luo B, Hang C, Li H J, Huang G X 2010 Chin. Phys. B 19 054214

    [37]

    Li L, Huang G X 2010 Phys. Rev. A 82 023809

    [38]

    Li H J, Huang G X 2008 Phys. Lett. A 372 4127

  • [1] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [2] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响.  , 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [3] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收.  , 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [4] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位.  , 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [5] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明.  , 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [6] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明.  , 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [7] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转.  , 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [8] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明.  , 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [9] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展.  , 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [10] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转.  , 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [11] 田芃, 黄黎蓉, 费淑萍, 余奕, 潘彬, 徐巍, 黄德修. 不同盖层对InAs/GaAs量子点结构和光学性质的影响.  , 2010, 59(8): 5738-5742. doi: 10.7498/aps.59.5738
    [12] 刘玉敏, 俞重远, 任晓敏. 隔离层厚度和盖层厚度对InAs/GaAs量子点应变分布和发射波长的影响.  , 2009, 58(1): 66-72. doi: 10.7498/aps.58.66
    [13] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环.  , 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [14] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构.  , 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [15] 刘绍鼎, 程木田, 王 霞, 王取泉. 激子自旋弛豫对简并量子点发射光子对纠缠度的影响.  , 2007, 56(8): 4924-4929. doi: 10.7498/aps.56.4924
    [16] 李耀义, 程木田, 周慧君, 刘绍鼎, 王取泉, 薛其坤. 脉冲激发三能级体系半导体量子点的单光子发射效率.  , 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [17] 刘绍鼎, 程木田, 周慧君, 李耀义, 王取泉, 薛其坤. 双激子和浸润层泄漏以及俄歇俘获对量子点Rabi振荡衰减的影响.  , 2006, 55(5): 2122-2127. doi: 10.7498/aps.55.2122
    [18] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究.  , 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [19] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明.  , 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究.  , 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
计量
  • 文章访问数:  6744
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-08
  • 修回日期:  2013-02-03
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map