搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体三量子点电磁感应透明介质中的非线性法拉第偏转

陈秋成

引用本文:
Citation:

半导体三量子点电磁感应透明介质中的非线性法拉第偏转

陈秋成

Nonlinear Faraday rotation in electromagnetically induced transparency medium of semiconductor three quantum dots

Chen Qiu-Cheng
PDF
导出引用
  • 利用一束弱线性偏振探测光在与其平行的磁场作用下所形成的两偏振分量,然后结合量子点间的隧穿耦合,构建了五能级M型半导体三量子点分子电磁感应透明介质.通过研究该体系的线性光学性质发现,操控量子点间隧穿耦合强度可有效调节系统中隧穿诱导透明窗口的宽度,并实现对介质的反常色散与正常色散的开关调节效应.随后,对体系非线性法拉第效应的研究发现,在相同的外加磁场下探测光的非线性法拉第偏转方向与线性法拉第偏转相反且非线性法拉第偏转角更大.
    In the past few years, many interesting optical phenomena, such as electromagnetically induced transparency, coherent optical control of a biexciton, slow light and optical solitons, have been investigated in single quantum dot (QD). However, in an actual semiconductor device there exist many quantum dots (QDs). Recently, QD molecule, which is comprised of double semiconductor QDs coupled by tunneling coupling, has been proposed. In this new semiconductor structure, many complex but interesting phenomena have been discovered. In fact, three QD molecules may also be composed of three QDs, which can be coupled by interdot tunneling coupling. For the three semiconductor QDs molecules, the influence of the interdot tunneling coupling strength must be considered. So, in this paper, with considering that a weak, -linear-polarized probe field can form left- and right-polarized components under the control of the parallel magnetic field, and when they are combined with the tunneling coupling among the QDs, an electromagnetically induced transparency medium of a five-level M configuration semiconductor three QDs is proposed. Subsequently, the nonlinear Faraday rotation in the semiconductor three QDs is analytically studied. For the linear case, the linear dispersion relation is driven by a method of multiple scales. Then, by studying the linear optical properties, it is found that the system exhibits a single tunneling induced transparency window due to the quantum destructive interference effect driven by the interdot tunneling coupling under appropriate conditions, and the width of the tunneling induced transparency window can be effectively controlled by the strength of the interdot tunneling coupling. Meanwhile, the switch regulatory effect, which changes from the anomalous dispersion regime to the normal dispersion regime, is likely to be achieved by changing the strength of the interdot tunneling coupling. For the nonlinear case, two coupled nonlinear Schrdinger equations, which govern the evolutions of left- and right-polarized components of the weak, -linear-polarized probe field under the applied longitudinal magnetic field, are derived. By studying the nonlinear properties, it is shown that a large nonlinear Faraday rotation angle can be obtained due to the quantum interference effect which is induced by the interdot tunneling coupling with a very low absorption of the weak, -linear-polarized probe field. In addition, it is also found that the nonlinear Faraday rotation direction is opposite to line Faraday rotation for the same magnetic field. What is more, the nonlinear Faraday rotation angle grows bigger than the linear Faraday rotation. These results mean that the Faraday rotation of the three semiconductor QDs with the electromagnetically induced transparency can be more effectively controlled by the nonlinear effect.
      通信作者: 陈秋成, chenqiucheng68@126.com
    • 基金项目: 国家自然科学基金(批准号:11247313)资助的课题.
      Corresponding author: Chen Qiu-Cheng, chenqiucheng68@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11247313).
    [1]

    Faraday M 1846 Philos. Mag. 28 294

    [2]

    Wang B, Li S J, Ma J, Wang H, Peng K C, Xiao M 2006 Phys. Rev. A 73 051801

    [3]

    Peng Z H, Zou J, Liu X J, Xiao Y J, Kuang L M 2012 Phys. Rev. A 86 034305

    [4]

    Liu Q, Gross S, Dekker P, Withford M J, Steel M J 2014 Opt. Express 22 28037

    [5]

    Yu Z, Fan S 2009 Nat. Photon. 3 91

    [6]

    Hang C, Huang G X 2007 Chin. Opt. Lett. 5 47

    [7]

    Zhu C J, Deng L, Hagley E W 2013 Phys. Rev. A 88 023854

    [8]

    He Y M, Wei Y J, He Y, Xiong F L, Chen K, Zhao Y, Lu Z Y 2014 Sci. Sin. Inform. 44 394 (in Chinese)[何玉明, 魏宇佳, 贺煜, 熊飞雷, 陈凯, 赵勇, 陆朝阳2014中国科学信息科学 44 394]

    [9]

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 147801 (in Chinese)[曾宽宏, 王登龙, 佘彦超, 张蔚曦2013 62 147801]

    [10]

    Bai Y F, Yang W X, Han D A, Yu X Q 2012 Chin. Phys. B 21 114208

    [11]

    Hao X Y, Zheng A S, Wang Y, Li X G 2012 Commun. Theor. Phys. 57 866

    [12]

    Wu Y, Yang X X 2007 Phys. Rev. B 76 054425

    [13]

    Tian S C, Wan R G, Tong C Z, Ning Y Q 2014 J. Opt. Soc. Am. B 31 2681

    [14]

    Ding C L, Yu R, Li J H, Hao X Y, Wu Y 2014 Phys. Rev. A 90 043819

    [15]

    Borges H S, Sanz L, Villas-Boas J M, Diniz Neto O O, Alcalde A M 2012 Phys. Rev. B 85 115425

    [16]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830

    [17]

    Sun H, Fan S L, Feng X L, Wu C F, Gong S Q, Huang G X, Oh C H 2012 Opt. Express 20 8485

    [18]

    Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604

    [19]

    Vaseghi B, Mohebi N 2013 J. Lumin. 134 352

    [20]

    Songmuang R, Kiravittaya S, Schmidt O G 2003 Appl. Phys. Lett. 82 2892

    [21]

    Beirne G J, Hermannstädter C, Wang L, Rastelli A, Schmidt O G, Michler P 2006 Phys. Rev. Lett. 96 137401

    [22]

    Yang W, Sun D L, Zhou L, Wang J, Zhan M S 2014 Acta Phys. Sin. 63 153701(in Chinese)[杨威, 孙大立, 周林, 王谨, 詹明生2014 63 153701]

    [23]

    Chen Q C 2014 Chin. Phys. B 23 124212

    [24]

    Yang W X, Lee R K 2008 Europhys. Lett. 83 14002

    [25]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392

    [26]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820

    [27]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [28]

    She Y C, Zhang W X, Wang D L 2011 Acta Phys. Sin. 60 064205 (in Chinese)[佘彦超, 张蔚曦, 王登龙2011 60 064205]

    [29]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D 1996 Science 273 87

  • [1]

    Faraday M 1846 Philos. Mag. 28 294

    [2]

    Wang B, Li S J, Ma J, Wang H, Peng K C, Xiao M 2006 Phys. Rev. A 73 051801

    [3]

    Peng Z H, Zou J, Liu X J, Xiao Y J, Kuang L M 2012 Phys. Rev. A 86 034305

    [4]

    Liu Q, Gross S, Dekker P, Withford M J, Steel M J 2014 Opt. Express 22 28037

    [5]

    Yu Z, Fan S 2009 Nat. Photon. 3 91

    [6]

    Hang C, Huang G X 2007 Chin. Opt. Lett. 5 47

    [7]

    Zhu C J, Deng L, Hagley E W 2013 Phys. Rev. A 88 023854

    [8]

    He Y M, Wei Y J, He Y, Xiong F L, Chen K, Zhao Y, Lu Z Y 2014 Sci. Sin. Inform. 44 394 (in Chinese)[何玉明, 魏宇佳, 贺煜, 熊飞雷, 陈凯, 赵勇, 陆朝阳2014中国科学信息科学 44 394]

    [9]

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 147801 (in Chinese)[曾宽宏, 王登龙, 佘彦超, 张蔚曦2013 62 147801]

    [10]

    Bai Y F, Yang W X, Han D A, Yu X Q 2012 Chin. Phys. B 21 114208

    [11]

    Hao X Y, Zheng A S, Wang Y, Li X G 2012 Commun. Theor. Phys. 57 866

    [12]

    Wu Y, Yang X X 2007 Phys. Rev. B 76 054425

    [13]

    Tian S C, Wan R G, Tong C Z, Ning Y Q 2014 J. Opt. Soc. Am. B 31 2681

    [14]

    Ding C L, Yu R, Li J H, Hao X Y, Wu Y 2014 Phys. Rev. A 90 043819

    [15]

    Borges H S, Sanz L, Villas-Boas J M, Diniz Neto O O, Alcalde A M 2012 Phys. Rev. B 85 115425

    [16]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830

    [17]

    Sun H, Fan S L, Feng X L, Wu C F, Gong S Q, Huang G X, Oh C H 2012 Opt. Express 20 8485

    [18]

    Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604

    [19]

    Vaseghi B, Mohebi N 2013 J. Lumin. 134 352

    [20]

    Songmuang R, Kiravittaya S, Schmidt O G 2003 Appl. Phys. Lett. 82 2892

    [21]

    Beirne G J, Hermannstädter C, Wang L, Rastelli A, Schmidt O G, Michler P 2006 Phys. Rev. Lett. 96 137401

    [22]

    Yang W, Sun D L, Zhou L, Wang J, Zhan M S 2014 Acta Phys. Sin. 63 153701(in Chinese)[杨威, 孙大立, 周林, 王谨, 詹明生2014 63 153701]

    [23]

    Chen Q C 2014 Chin. Phys. B 23 124212

    [24]

    Yang W X, Lee R K 2008 Europhys. Lett. 83 14002

    [25]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392

    [26]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820

    [27]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [28]

    She Y C, Zhang W X, Wang D L 2011 Acta Phys. Sin. 60 064205 (in Chinese)[佘彦超, 张蔚曦, 王登龙2011 60 064205]

    [29]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D 1996 Science 273 87

  • [1] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学.  , 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响.  , 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [4] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收.  , 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [5] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位.  , 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [6] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明.  , 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [7] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明.  , 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [8] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析.  , 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [9] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明.  , 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [10] 曾宽宏, 王登龙, 佘彦超, 张蔚曦. 计及激子-双激子相干下半导体单量子点中的空间光孤子对.  , 2013, 62(14): 147801. doi: 10.7498/aps.62.147801
    [11] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展.  , 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [12] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明.  , 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [13] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转.  , 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [14] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环.  , 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [15] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构.  , 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [16] 李耀义, 程木田, 周慧君, 刘绍鼎, 王取泉, 薛其坤. 脉冲激发三能级体系半导体量子点的单光子发射效率.  , 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究.  , 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明.  , 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [19] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究.  , 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [20] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益.  , 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
计量
  • 文章访问数:  6237
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-26
  • 修回日期:  2016-08-23
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map