Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Target polarization effect on energy loss of O5+ ions near Bohr velocity in low density hydrogen plasma

Wang Guo-Dong Cheng Rui Wang Zhao Zhou Ze-Xian Luo Xia-Hui Shi Lu-Lin Chen Yan-Hong Lei Yu Wang Yu-Yu Yang Jie

Citation:

Target polarization effect on energy loss of O5+ ions near Bohr velocity in low density hydrogen plasma

Wang Guo-Dong, Cheng Rui, Wang Zhao, Zhou Ze-Xian, Luo Xia-Hui, Shi Lu-Lin, Chen Yan-Hong, Lei Yu, Wang Yu-Yu, Yang Jie
PDF
HTML
Get Citation
  • Energy loss of ions near the Bohr velocity in plasma is one of the important topics in intense heavy ion beam driven high energy density physics and inertial confinement fusion. Based on the ions-plasma interaction experimental platform at HIRFL, this work shows the new experimental energy loss results of 1.07 MeV (~66.9 keV/u) O5+ ions penetrating through a low-density partially ionized hydrogen plasma target (radio frequency plasma). The decrease of energy loss with free electron density increasing is found, which is very different from our previous result. The new experimental results are discussed by considering the theoretical models which involves the charge screening of projectiles in the partially ionized plasma and the target polarization effect-Barkas correction term. For the charge screening , the comparison between the momentum transfer under the Coulomb potential and that under the Debye potential is given, but due to the low ionization degree, the plasma screening effect seems not to be the main reason for the decrease of energy loss. For the target polarization effect , in the Bohr velocity regime, the Barkas correction term can play a key role in the ion-atom collisions. Modeling the Barkas correction term based on the proposed classical energy loss formula, the experimental data of ions in the gas target can be well fitted by the calculated values. In the partially ionized plasma, the frequent thermal electron collisions can give rise to the atomic excitation of plasma target, correspondingly the Barkas correction term changes: it decreases with the fraction of excited atoms increasing. As a result, the energy loss decreases in our experiment. In the stopping of highly charged ions in a partially ionized low-density plasma, the collisions between ions and free electrons can produce an enhanced energy loss according to previous studies. However, the target polarization effect, especially the atomic excitations, can significantly reduce the energy loss, which is observed in our experiment. Therefore, the interaction between ions and partially ionized plasma should be further studied, and the Barkas correction can be a very important term.
      Corresponding author: Cheng Rui, chengrui@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1532263, 11505248, 11375034, 11875096).
    [1]

    Bohr N 1913 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25 10Google Scholar

    [2]

    Deutsch C, Maynard G, Chabot M, Gardes D, della-negra S, Bimbot R, Rivet M-F, Fleurier C, Couillaud C, Hoffmann D, Wahl H, Weyrich K, Rosmej O N, Tahir N, Jacoby J, Ogawa M, Oguri Y, Hasegawa J, Sharkov B, Mintsev V 2010 Plasma Phys. J. 3 88

    [3]

    Zhao Y T, Hu Z H, Cheng R, Wang Y Y, Peng H B, Golubev A, Zhang X A, Lu X, Zhang D C, Zhou X M, Wang X, Xu G, Ren J R, Li Y F, Lei Y, Sun Y B, Zhao J T, Wang T S, Wang Y N, Xiao G Q 2012 Laser Part. Beams 30 679Google Scholar

    [4]

    Khuyagbaatar J, Shevelko V P, Borschevsky A, Düllmann C E, Tolstikhina I Y, Yakushev A 2013 Phys. Rev. A 88 042703Google Scholar

    [5]

    Betz H-D 1972 Rev. Mod. Phys. 44 465Google Scholar

    [6]

    Peter T, Arnold R, Meyer-ter-Vehn J 1986 Phys. Rev. Lett. 57 1859Google Scholar

    [7]

    Cheng R, Zhou X, Wang Y, Lei Y, Chen Y, Ma X, Xiao G, Zhao Y, Ren J, Huo D, Peng H, Savin S, Gavrilin R, Roudskoy I, Golubev A 2018 Laser Part. Beams 36 98Google Scholar

    [8]

    Young F C, Mosher D, Stephanakis S J, Goldstein S A, Mehlhorn T A 1982 Phys. Rev. Lett. 49 549Google Scholar

    [9]

    Redmer R 1997 Phys. Rep. 282 35Google Scholar

    [10]

    Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 1998Google Scholar

    [11]

    Thorsen J 1987 Niels Bohr Collected Works (Copenhagen: Elsevier Press) pp403-408

    [12]

    Barkas W H, Dyer J N, Heckman H H 1963 Phys. Rev. Lett. 11 26Google Scholar

    [13]

    Sigmund P, Schinner A 2014 Eur. Phys. J. D 68 318Google Scholar

    [14]

    Adamo A, Agnello M, Balestra F, Belli G, Bendiscioli G, Bertin A, Boccaccio P, Bonazzola G C, Bressani T, Bruschi M, Bussa M P, Busso L, Calvo D, Capponi M, Cicalò C, Corradini M, Costa S, D’Antone I, De Castro S, D’Isep F, Donzella A, Falomkin I V, Fava L, Feliciello A, Ferrero L, Filippini V, Galli D, Garfagnini R, Gastaldi U, Gianotti P, Grasso A, Guaraldo C, Iazzi F, Lanaro A, Lodi Rizzini E, Lombardi M, Lucherini V, Maggiora A, Marcello S, Marconi U, Maron G, Masoni A, Massa I, Minetti B, Morando M, Montagna P, Nichitiu F, Panzieri D, Pauli G, Piccinini M, Piragino G, Poli M, Pontecorvo G B, Puddu G, Ricci R A, Rossetto E, Rotondi A, Rozhdestvensky A M, Salvini P, Santi L, Sapozhnikov M G, Semprini Cesari N, Serci S, Temnikov P, Tessaro S, Tosello F, Tretyak V I, Usai G L, Vannucci L, Vedovato G, Venturelli L, Villa M, Vitale A, Zavattini G, Zenoni A, Zoccoli A, Zosi G 1993 Phys. Rev. A 47 4517Google Scholar

    [15]

    Schiwietz G, Wille U, Muiño R D, Fainstein P D, Grande P L 1996 J. Phys. B At. Mol. Opt. Phys. 29 307Google Scholar

    [16]

    Porter L E 2004 Advances in Quantum Chemistry (Pullman: Academic Press) pp91–119

    [17]

    Pandey M K, Lin Y C, Ho Y K 2012 Phys. Plasmas 19 062104Google Scholar

    [18]

    Bimbot R, Geissel H, Paul H, Schinner A, Sigmund P, Wambersie A, Deluca P, Seltzer S M 2005 J. ICRU 5 44Google Scholar

    [19]

    Lindhard J 1976 Nucl. Instrum. Methods Phys. Res. Sect. B 132 1Google Scholar

    [20]

    Makarov D N, Matveev V I 2015 J. Exp. Theor. Phys. 120 772Google Scholar

    [21]

    Griffin D C 1989 Phys. Scr. T28 17Google Scholar

    [22]

    Purkait M, Dhara A, Sounda S, Mandal C R 2001 J. Phys. B At. Mol. Opt. Phys. 34 755Google Scholar

    [23]

    Wang Z, Guo B, Cheng R, Xue F B, Chen Y H, Lei Y, Wang Y Y, Zhou Z X, Yang J, Su M G, Dong C Z 2021 Phys. Rev. A 104 022802Google Scholar

    [24]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D H H 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [25]

    Schiwietz G, Grande P L 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 175–177 125Google Scholar

    [26]

    Matveev V I, Makarov D N 2011 JETP Lett. 94 1Google Scholar

    [27]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press) pp17–48

  • 图 1  中科院近物所的离子束与等离子体相互作用实验装置示意图

    Figure 1.  Schematic drawing of the ion-plasma interaction setups at IMPCAS.

    图 2  射频等离子体的(a)电子密度和(b)电子温度随馈入功率的变化

    Figure 2.  The change of (a) electron density and (b) electron temperature with input power in RF plasma.

    图 3  80 Pa气压下, 实验测量到出射O1+离子位置随着馈入功率的增加而变化, 原始实验结果(a)经过转化后得到出射O1+离子能谱(b)

    Figure 3.  At 80 Pa pressure, the position of the outgoing O1+ ion was measured to change with the increase of the input power, the original experimental results (a) were converted to obtain the outgoing O1+ ion energy spectrum (b).

    图 4  不同气压条件下, 离子能损随馈入功率的相对变化, 其中以离子在中性气体靶(馈入功率0 W)中的能损为归一化条件

    Figure 4.  Under different pressure, the relative change of ion energy loss with the input power, in which the ion energy loss in the neutral gas target (input power=0 W) is the normalization condition.

    图 5  碰撞参数$ b=2{r}_{0} $${{\Delta P}_{{\rm{D}}{\rm{e}}{\rm{b}}{\rm{y}}{\rm{e}}}}/{{\Delta P}_{{\rm{C}}{\rm{o}}{\rm{u}}{\rm{l}}{\rm{o}}{\rm{m}}{\rm{b}}}}$随着Debye长度的变化趋势

    Figure 5.  ${{\Delta P}_{{\rm{D}}{\rm{e}}{\rm{b}}{\rm{y}}{\rm{e}}}}/{{\Delta P}_{{\rm{C}}{\rm{o}}{\rm{u}}{\rm{l}}{\rm{o}}{\rm{m}}{\rm{b}}}}$ as a function of Debye length at the collision parameter $ b=2{r}_{0} $.

    图 6  中性气体靶中, 未考虑Barkas修正(红虚线)和考虑Barkas修正后(黑虚线)的离子能损计算结果与实验结果的比较

    Figure 6.  In a neutral gas target, the calculation results of ion energy loss without Barkas correction (red dashed line) and with Barkas correction (black dashed line) are compared with the experimental results.

    图 7  不同功率下, (a)$ {H}_{\alpha } $相对光强随馈入功率的变化; (b)对应的n = 3激发态原子相对数密度随馈入功率的升高而增大

    Figure 7.  Under different power, (a) change of $ {H}_{\alpha } $ relative light intensity with input power; (b) relative number density of excited atom n = 3 increases with the increase of input power

    图 8  相对能损的实验测量值与计算值对比

    Figure 8.  Comparison of experimental measured and calculated values of relative energy loss.

    Baidu
  • [1]

    Bohr N 1913 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25 10Google Scholar

    [2]

    Deutsch C, Maynard G, Chabot M, Gardes D, della-negra S, Bimbot R, Rivet M-F, Fleurier C, Couillaud C, Hoffmann D, Wahl H, Weyrich K, Rosmej O N, Tahir N, Jacoby J, Ogawa M, Oguri Y, Hasegawa J, Sharkov B, Mintsev V 2010 Plasma Phys. J. 3 88

    [3]

    Zhao Y T, Hu Z H, Cheng R, Wang Y Y, Peng H B, Golubev A, Zhang X A, Lu X, Zhang D C, Zhou X M, Wang X, Xu G, Ren J R, Li Y F, Lei Y, Sun Y B, Zhao J T, Wang T S, Wang Y N, Xiao G Q 2012 Laser Part. Beams 30 679Google Scholar

    [4]

    Khuyagbaatar J, Shevelko V P, Borschevsky A, Düllmann C E, Tolstikhina I Y, Yakushev A 2013 Phys. Rev. A 88 042703Google Scholar

    [5]

    Betz H-D 1972 Rev. Mod. Phys. 44 465Google Scholar

    [6]

    Peter T, Arnold R, Meyer-ter-Vehn J 1986 Phys. Rev. Lett. 57 1859Google Scholar

    [7]

    Cheng R, Zhou X, Wang Y, Lei Y, Chen Y, Ma X, Xiao G, Zhao Y, Ren J, Huo D, Peng H, Savin S, Gavrilin R, Roudskoy I, Golubev A 2018 Laser Part. Beams 36 98Google Scholar

    [8]

    Young F C, Mosher D, Stephanakis S J, Goldstein S A, Mehlhorn T A 1982 Phys. Rev. Lett. 49 549Google Scholar

    [9]

    Redmer R 1997 Phys. Rep. 282 35Google Scholar

    [10]

    Peter T, Meyer-ter-Vehn J 1991 Phys. Rev. A 43 1998Google Scholar

    [11]

    Thorsen J 1987 Niels Bohr Collected Works (Copenhagen: Elsevier Press) pp403-408

    [12]

    Barkas W H, Dyer J N, Heckman H H 1963 Phys. Rev. Lett. 11 26Google Scholar

    [13]

    Sigmund P, Schinner A 2014 Eur. Phys. J. D 68 318Google Scholar

    [14]

    Adamo A, Agnello M, Balestra F, Belli G, Bendiscioli G, Bertin A, Boccaccio P, Bonazzola G C, Bressani T, Bruschi M, Bussa M P, Busso L, Calvo D, Capponi M, Cicalò C, Corradini M, Costa S, D’Antone I, De Castro S, D’Isep F, Donzella A, Falomkin I V, Fava L, Feliciello A, Ferrero L, Filippini V, Galli D, Garfagnini R, Gastaldi U, Gianotti P, Grasso A, Guaraldo C, Iazzi F, Lanaro A, Lodi Rizzini E, Lombardi M, Lucherini V, Maggiora A, Marcello S, Marconi U, Maron G, Masoni A, Massa I, Minetti B, Morando M, Montagna P, Nichitiu F, Panzieri D, Pauli G, Piccinini M, Piragino G, Poli M, Pontecorvo G B, Puddu G, Ricci R A, Rossetto E, Rotondi A, Rozhdestvensky A M, Salvini P, Santi L, Sapozhnikov M G, Semprini Cesari N, Serci S, Temnikov P, Tessaro S, Tosello F, Tretyak V I, Usai G L, Vannucci L, Vedovato G, Venturelli L, Villa M, Vitale A, Zavattini G, Zenoni A, Zoccoli A, Zosi G 1993 Phys. Rev. A 47 4517Google Scholar

    [15]

    Schiwietz G, Wille U, Muiño R D, Fainstein P D, Grande P L 1996 J. Phys. B At. Mol. Opt. Phys. 29 307Google Scholar

    [16]

    Porter L E 2004 Advances in Quantum Chemistry (Pullman: Academic Press) pp91–119

    [17]

    Pandey M K, Lin Y C, Ho Y K 2012 Phys. Plasmas 19 062104Google Scholar

    [18]

    Bimbot R, Geissel H, Paul H, Schinner A, Sigmund P, Wambersie A, Deluca P, Seltzer S M 2005 J. ICRU 5 44Google Scholar

    [19]

    Lindhard J 1976 Nucl. Instrum. Methods Phys. Res. Sect. B 132 1Google Scholar

    [20]

    Makarov D N, Matveev V I 2015 J. Exp. Theor. Phys. 120 772Google Scholar

    [21]

    Griffin D C 1989 Phys. Scr. T28 17Google Scholar

    [22]

    Purkait M, Dhara A, Sounda S, Mandal C R 2001 J. Phys. B At. Mol. Opt. Phys. 34 755Google Scholar

    [23]

    Wang Z, Guo B, Cheng R, Xue F B, Chen Y H, Lei Y, Wang Y Y, Zhou Z X, Yang J, Su M G, Dong C Z 2021 Phys. Rev. A 104 022802Google Scholar

    [24]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann D H H 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [25]

    Schiwietz G, Grande P L 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 175–177 125Google Scholar

    [26]

    Matveev V I, Makarov D N 2011 JETP Lett. 94 1Google Scholar

    [27]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press) pp17–48

  • [1] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun. Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions. Acta Physica Sinica, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren. Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He. Acta Physica Sinica, 2024, 73(24): 1-9. doi: 10.7498/aps.73.20241290
    [3] Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen. Prospect for attosecond laser spectra of highly charged ions. Acta Physica Sinica, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [4] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [5] Pu Shi, Xiao Bo-Wen, Zhou Jian, Zhou Ya-Jin. Coherent photons induced high energy reactions in ultraperipheral heavy ion collisions. Acta Physica Sinica, 2023, 72(7): 072503. doi: 10.7498/aps.72.20230074
    [6] Li Tao-Tao, Yuan Hang, Wang Xing, Zhang Zhen, Guo Da-Long, Zhu Xiao-Long, Yan Shun-Cheng, Zhao Dong-Mei, Zhang Shao-Feng, Xu Shen-Yue, Ma Xin-Wen. Three-body fragmentation dynamics of C3H4 induced by 50-keV/u Ne8+ ion impact. Acta Physica Sinica, 2022, 71(9): 093401. doi: 10.7498/aps.71.20212202
    [7] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [8] Zhang Bing-Zhang,  Song Zhang-Yong,  Zhang Ming-Wu,  Liu Xuan,  Qian Cheng,  Fang Xin,  Shao Chao-Jie,  Wang Wei,  Liu Jun-Liang,  Zhu Zhi-Chao,  Sun Liang-Ting,  Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [9] Zhang Bing-Zhang, Song Zhang-Yong, Zhang Ming-Wu, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Zhu Zhi-Chao, Sun Liang-Ting, Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [10] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [11] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [12] Xu Qiu-Mei, Yang Zhi-Hu, Guo Yi-Pan, Liu Hui-Ping, Chen Yan-Hong, Zhao Hong-Yun. Visible light emission from surface of nickel bombarded by slow Xeq+ (4 q 20) ion. Acta Physica Sinica, 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [13] Wang Xing, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Xu Ge, Sun Yuan-Bo, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Yu Yang, Li Yong-Feng, Zhang Xiao-An, Li Yao-Zong, Liang Chang-Hui, Xiao Guo-Qing. Multiple ionization effect of Ta induced by heavy ions. Acta Physica Sinica, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [14] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [15] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [16] Wang Li, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The coulomb potential energy effect on the intensity of the characteristic lines at highly charged ion incendence on Al surface. Acta Physica Sinica, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [17] Peng Hai-Bo, Wang Tie-Shan, Han Yun-Cheng, Ding Da-Jie, Xu He, Cheng Rui, Zhao Yong-Tao, Wang Yu-Yu. Study of channeling effect by impact of highly charged ions on crystal surface of Si(110). Acta Physica Sinica, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [18] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [19] Wang Yu-Yu, Zhao Yong-Tao, Xiao Guo-Qing, Fang Yan, Zhang Xiao-An, Wang Tie-Shan, Wang Shi-Wei, Peng Hai-Bo. Electron emission induced by the interaction of highly charged ions 207Pbq+(24≤q≤36) with solid surface of Si(110). Acta Physica Sinica, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [20] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
Metrics
  • Abstract views:  3754
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  27 September 2022
  • Accepted Date:  29 October 2022
  • Available Online:  17 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回
Baidu
map