Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study of precision spectroscopy of dielectronic recombination for highly charged heavy ions at HIAF

HUANG Houke WEN Weiqiang HUANG Zhongkui WANG Shuxing TANG Meitang LI Jie MAO Lijun YUAN Yang WAN Mengyu LIU Chang WANG Hanbing ZHOU Xiaopeng ZHAO Dongmei YAN Kaiming ZHOU Yunbin YUAN Youjin YANG Jiancheng ZHANG Shaofeng ZHU Linfan MA Xinwen

Citation:

Simulation study of precision spectroscopy of dielectronic recombination for highly charged heavy ions at HIAF

HUANG Houke, WEN Weiqiang, HUANG Zhongkui, WANG Shuxing, TANG Meitang, LI Jie, MAO Lijun, YUAN Yang, WAN Mengyu, LIU Chang, WANG Hanbing, ZHOU Xiaopeng, ZHAO Dongmei, YAN Kaiming, ZHOU Yunbin, YUAN Youjin, YANG Jiancheng, ZHANG Shaofeng, ZHU Linfan, MA Xinwen
cstr: 32037.14.aps.74.20241589
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Dielectronic recombination (DR) experiments of highly charged ions not only provide essential atomic benchmark data for astrophysical and fusion plasma research but also serve as a stringent test for strong-field quantum electrodynamics (QED) effects, relativistic effects, and electron correlation effects. High-intensity heavy-ion accelerator facility (HIAF), currently under construction at Huizhou, China, will have a high-precision spectrometer ring (SRing) equipped with a 450 kV electron-cooler and an 80 kV ultracold electron-target. This advanced setup facilitates precise measurements of the DR process for highly charged ions in a broad range of center-of-mass energy, from meV to tens of keV. In this work, we carry out the molecular dynamics simulation of the electron beam temperature distribution of the ultracold electron-target at the SRing. The simulation results indicate that after treatment by the designed adiabatic magnetic field and acceleration field, the transverse and longitudinal electron beam temperature generated by the thermionic electron gun can be reduced from 100 meV to below 5 meV and 0.1 meV, respectively. Furthermore, we analyze the influence of this ultracold electron beam temperature on the resonance peak and energy resolution in DR experiment. The resolution gain at the SRing electron-target is particularly pronounced at small electron-ion collision energy, which provides unique experimental conditions for the DR experiments. Taking lithium-like $ {}_{~\,54}^{129}{{\mathrm{X}}{\mathrm{e}}}^{51+} $ and $ {}_{~\,92}^{238}{{\mathrm{U}}}^{89+} $ ions for example, we simulate the DR resonance spectra at the SRing and compare them with the simulated results from the experimental cooler storage ring CSRe. The results reveal that the SRing experiments can resolve fine DR resonance structures with ultra-high energy resolution compared with those from the CSRe. This work lays a solid foundation for precise DR spectroscopy of highly charged ions at the SRing to stringent test of strong field QED effect and extraction nuclear structure information.
      Corresponding author: WEN Weiqiang, wenweiqiang@impcas.ac.cn ; MA Xinwen, x.ma@impcas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant No. 12393824), and the Youth Innovation Promotion Association of the Chinese Academy of Science.
    [1]

    Savin D W, Bartsch T, Chen M H, Kahn S M, Liedahl D A, Linkemann J, Müller A, Schippers S, Schmitt M, Schwalm D, Wolf A 1997 Astrophys. J. 489 L115Google Scholar

    [2]

    Savin D W, Behar E, Kahn S M, Gwinner G, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Badnell N R, Chen M H, Gorczyca T W 2002 Astrophys. J. 138 337Google Scholar

    [3]

    Savin D W, Gwinner G, Grieser M, Repnow R, Schnell M, Schwalm D, Wolf A, Zhou S G, Kieslich S, Muller A, Schippers S, Colgan J, Loch S D, Badnell N R, Chen M H, Gu M F 2006 Astrophys. J. 642 1275Google Scholar

    [4]

    Savin D W, Kahn S M, Gwinner G, Grieser M, Repnow R, Saathoff G, Schwalm D, Wolf A, Muller A, Schippers S, Zavodszky P A, Chen M H, Gorczyca T W, Zatsarinny O, Gu M F 2003 Astrophys. J. Suppl. Ser. 147 421Google Scholar

    [5]

    Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Brandau C, Hoffknecht A, Muller A, Schippers S, Chen M H, Badnell N R 1999 Astrophys. J. Suppl. Ser. 123 687Google Scholar

    [6]

    Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Chen M H, Badnell N R, Gorczyca T W, Zatsarinny O 2002 Astrophys. J. 576 1098Google Scholar

    [7]

    Schmidt E W, Schippers S, Müller A, Lestinsky M, Sprenger F, Grieser M, Repnow R, Wolf A, Brandau C, Lukić D, Schnell M, Savin D W 2006 Astrophys. J. 641 L157Google Scholar

    [8]

    Larsson M 1995 Rep. Prog. Phys. 58 1267Google Scholar

    [9]

    Phaneuf R A, Havener C C, Dunn G H, Müller A 1999 Rep. Prog. Phys. 62 1143Google Scholar

    [10]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2001 Phys. Rev. Lett. 86 5027Google Scholar

    [11]

    Brandau C, Kozhuharov C, Müller A, et al. 2003 Phys. Rev. Lett. 91 073202Google Scholar

    [12]

    Wang S X, Brandau C, Fritzsche S, Fuchs S, Harman Z, Kozhuharov C, Müller A, Steck M, Schippers S 2024 Eur. Phys. J. D 78 122Google Scholar

    [13]

    Brandau C, Kozhuharov C, Lestinsky M, Müller A, Schippers S, Stöhlker T 2015 Phys. Scr. 2015 014022Google Scholar

    [14]

    Bates D R, Massey H S W 1943 Philos. Trans. R. Soc. London, Ser. A 239 269Google Scholar

    [15]

    Badnell N R, Pindzola M S, Andersen L H, Bolko J, Schmidt H T 1991 J. Phys. B: At. Mol. Opt. Phys. 24 4441Google Scholar

    [16]

    LaGattuta K, Hahn Y 1981 Phys. Rev. A 24 785Google Scholar

    [17]

    Brooks R, Datla R, Griem H R 1978 Phys. Rev. Lett. 41 107Google Scholar

    [18]

    Müller A, Belić D, DePaola B, Djurić N, Dunn G, Mueller D, Timmer C 1987 Phy. Rev. A 36 599Google Scholar

    [19]

    Schippers S 2015 Nucl. Instrum. Methods Phys. Res. , Sect. B 350 61Google Scholar

    [20]

    Shevelko V, Tawara H 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer) pp283–306

    [21]

    Schuch R, Böhm S 2007 J. Phys. Conf. Ser. 88 012002Google Scholar

    [22]

    Huang Z K, Wen W Q, Wang H B, Xu X, Zhu L F, Chuai X Y, Yuan Y J, Zhu X L, Han X Y, Mao L J, Li J, Ma X M, Yan T L, Yang J C, Xiao G Q, Xia J W, Ma X 2015 Phys. Scr. T166 014023Google Scholar

    [23]

    Huang Z K, Wang S X, Wen W Q, Wang H B, Ma W L, Chen C Y, Zhang C Y, Chen D Y, Huang H K, Shao L, Liu X, Zhou X P, Mao L J, Li J, Ma X M, Tang M T, Yang J C, Yuan Y J, Zhang S F, Zhu L F, Ma X W 2023 Chin. Phys. B 32 073401Google Scholar

    [24]

    Danared H, Andler G, Bagge L, Herrlander C J, Hilke J, Jeansson J, Källberg A, Nilsson A, Paál A, Rensfelt K G, Rosengård U, Starker J, af Ugglas M 1994 Phys. Rev. Lett. 72 3775Google Scholar

    [25]

    Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001Google Scholar

    [26]

    Schippers S, Schmidt E W, Bernhardt D, Yu D, Muller A, Lestinsky M, Orlov D A, Grieser M, Repnow R, Wolf A 2007 Phys. Rev. Lett. 98 033001Google Scholar

    [27]

    Brandau C, Kozhuharov C, Harman Z, et al. 2008 Phys. Rev. Lett. 100 073201Google Scholar

    [28]

    Huang Z K, Wen W Q, Xu X, et al. 2018 Astrophys. J. Suppl. Ser. 235 2Google Scholar

    [29]

    Wang S X, Xu X, Huang Z K, Wen W Q, Wang H B, Khan N, Preval S P, Badnell N R, Schippers S, Mahmood S, Dou L J, Chuai X Y, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Tang M T, Yin D Y, Yang J C, Ma X, Zhu L F 2018 Astrophys. J. 862 2Google Scholar

    [30]

    Wang S X, Huang Z K, Wen W Q, et al. 2019 Astron. Astrophys. 627 A171Google Scholar

    [31]

    Wang S X, Huang Z K, Wen W Q, et al. 2022 Phys. Rev. A 106 042808Google Scholar

    [32]

    Huang Z K, Wen W Q, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S P, Badnell N R, Ma W L, Liu X, Chen D Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yang W Q, Yang J C, Yuan Y J, Zhu L F, Ma X 2020 Phys. Rev. A 102 062823Google Scholar

    [33]

    邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文 2024 73 123402Google Scholar

    Shao L, Huang Z K, Wen W Q, Wang S X, Huang H K, Ma W L, Liu C, Wang H B, Chen D Y, Liu X, Zhou X P, Zhao D M, Zhang S F, Zhu L F, Ma X W 2024 Acta Phys. Sin. 73 123402Google Scholar

    [34]

    马余刚, 赵红卫 2020 中国科学: 物理学 力学 天文学 50 112001

    Ma Y G, Zhao H W 2020 Sci. Sin. Phys. Mech. Astron. 50 112001

    [35]

    马新文, 张少锋, 汶伟强, 杨杰, 朱小龙, 钱东斌, 闫顺成, 张鹏鸣, 郭大龙, 汪寒冰, 黄忠魁 2020 中国科学: 物理学 力学 天文学 50 112008Google Scholar

    Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin. Phys. Mech. Astron. 50 112008Google Scholar

    [36]

    Huang Z K, Wen W Q, Xu X, Wang H B, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 135Google Scholar

    [37]

    Danared H 1995 Phys. Scr. T59 121Google Scholar

    [38]

    Zaghloul M R 2017 ACM Trans. Math. Softw. 44 22Google Scholar

    [39]

    Dou L, Xie L, Zhang D, Dong C, Wen W, Huang Z, Ma X 2017 Euro. Phys. J. D 71 128Google Scholar

    [40]

    李传莹, 刘晓菊, 孟广为, 王建国 2010 59 6044Google Scholar

    Li C Y, Liu X J, Meng G W, Wang J G 2010 Acta Phys. Sin. 59 6044Google Scholar

    [41]

    Danared H 1993 Nucl. Instrum. Methods Phys. Res., Sect. A 335 397Google Scholar

    [42]

    张平文, 李铁军 2007 数值分析 (北京: 北京大学出版社) 第161页

    Zhang P W, Li T J 2007 Numerical Analysis (Beijing: Beijing University Press) p161

    [43]

    Danared H 1998 Hyperfine Interact. 115 61Google Scholar

    [44]

    Zubova N A, Kozhedub Y S, Shabaev V M, Tupitsyn I I, Volotka A V, Plunien G, Brandau C, Stöhlker T 2014 Phys. Rev. A 90 062512Google Scholar

    [45]

    啜晓亚, 黄忠魁, 汶伟强, 汪寒冰, 许鑫, 汪书兴, 李冀光, 豆丽君, 赵冬梅, 朱小龙, 冒立军, 殷达钰, 杨建成, 原有进, 马新文 2018 原子核物理评论 35 196Google Scholar

    Chuai X Y, Huang Z K, Wen W Q, Wang H B, Xu X, Wang S X, Li J G, Dou L J, Zhao D M, Zhu X L, Mao L J, Yin D Y, Yang J C, Yuan Y J, Ma X W 2018 Nucl. Phys. Rev. 35 196Google Scholar

  • 图 1  类锂离子的双电子复合过程示意图 (a)→(b)电子共振俘获过程; (b)→(c)辐射稳定过程; (d)双电子复合共振谱示意图

    Figure 1.  DR process for Li-like ions: (a)→(b) The resonant electron capture process; (b)→(c) the radiative stabilization process; (d) schematic diagram of measurement for DR spectrum.

    图 2  (a) TSR上类锂Sc18+离子的超精细分裂的精密测量[25]; (b) ESR上类锂Nd57+离子同位素位移的精密测量[27]

    Figure 2.  (a) Precision measurement of hyperfine splitting of Li-like Sc18+ ions at the TSR[25]; (b) precision measurement of isotope shift of Li-like Nd57+ ions at the ESR[27].

    图 3  HIAF- SRing的双电子复合实验装置示意图

    Figure 3.  DR experiment setup at HIAF-SRing.

    图 4  (a)超冷电子靶装置设计的绝热磁场$ {B}_{z} $和绝热参数$ \xi $的分布图; (b)超冷电子靶的电子束从热阴极发射后, 通过绝热磁场膨胀的示意图. 在引导磁场的作用下, 电子进行拉莫尔进动并经历绝热膨胀. 绿色箭头表示电子的运动轨迹

    Figure 4.  (a) Designed adiabatic magnetic field $ {B}_{z} $ and adiabatic parameter $ \xi $ of ultracold electron-target as a function of position in the electron-target; (b) schematic illustration of an electron beam emitted from a thermionic cathode within an ultracold electron-target as it traverses the magnetic field. Under the influence of the guiding magnetic field, the electrons undergo Larmor precession and adiabatic expansion. The green arrows indicate the direction of electron motion.

    图 5  (a) 单个电子横向动能、电子束横向温度随着电子束能量的变换关系. 黑色点线表示单个电子的横向动能, 红色曲线代表电子束的横向温度. 当电子束的能量低于80 keV时, 电子束在磁场中保持绝热运动状态. (b) 电子束纵向温度随着电子束能量的变换关系

    Figure 5.  (a) Transverse kinetic energy of the individual electron and transverse temperature of the electron beam as a function of electron beam energy. The black dashed line indicates the transverse kinetic energy of individual electrons, while the red curve represents the transverse temperature of the electron beam. The electron beam maintains adiabatic motion within the magnetic field when the energy of the electron beam is below 80 keV. (b) The longitudinal temperature of the electron beam as a function of electron beam energy.

    图 6  SRing (红色实线)和CSRe (蓝色实线)上双电子复合实验的能量分辨率与电子-离子碰撞能量之间的关系. 图中分别标出了横向温度(kBT)、纵向温度(kBT//)对实验分辨的贡献. SRing在低能电子离子碰撞区域(meV级)展现出极高的能量分辨

    Figure 6.  Energy resolution of DR experiments as a function of electron-ion collision energy at the storage SRing (red solid line) and CSRe (blue solid line). The figure also shows the contributions of transverse temperature (kBT) and longitudinal temperature (kBT//) to the experimental resolution. The DR experiment demonstrates ultra-high energy resolution in the low-energy electron-ion collision region (meV-level).

    图 7  (a)电子束纵向温度$ {{k}_{{\mathrm{B}}}T}_{/ / }=0.1\;{\mathrm{meV}} $不变, 不同的电子束横向温度$ {k}_{{\mathrm{B}}}{T}_{\perp }=5, {\mathrm{ }}10, {\mathrm{ }}20\;{\mathrm{meV}} $对双电子复合峰型和速率系数的影响, 其中共振峰的能量$ {E}_{{\mathrm{d}}}=20\;{\mathrm{meV}} $, 强度$ S=1\times10^{-18}~\mathrm{cm^2{\cdot}eV} $. (b)电子束横向温度$ {k}_{{\mathrm{B}}}{T}_{\perp }=5\;{\mathrm{meV}} $不变, 不同的电子束纵向温度$ {{k}_{{\mathrm{B}}}T}_{/ / }=0.1, 0.5, 1~{\mathrm{eV}} $对双电子复合峰型和速率系数的影响, 其中共振峰的能量$ {E}_{{\mathrm{r}}{\mathrm{e}}{\mathrm{s}}}=20\;{\mathrm{meV}} $, 强度$ S=1\times10^{-18}~\mathrm{cm^2{\cdot}eV} $. (c) SRing和CSR在相同共振位置上的共振峰, 其中SRing上的电子束温度为$ {k}_{{\mathrm{B}}}{T}_{\perp }=5\;{\mathrm{meV}}, {{k}_{{\mathrm{B}}}T}_{/ / }=0.1\;{\mathrm{meV}} $, 而CSRe上的电子束温度为$ {k}_{{\mathrm{B}}}{T}_{\perp }=80\;{\mathrm{meV}}, {{k}_{{\mathrm{B}}}T}_{/ / }=1~{\mathrm{meV}} $

    Figure 7.  (a) Effect of different transverse temperatures of the electron beam, $ {k}_{{\mathrm{B}}}{T}_{\perp }=5, {\mathrm{ }}10, {\mathrm{ }}20\;{\mathrm{meV}} $, on the DR peak shape and rate coefficient when the longitudinal temperature $ {{k}_{{\mathrm{B}}}T}_{/ / }=0.1\;{\mathrm{meV}} $ is constant, with the resonance energy $ {E}_{{\mathrm{d}}}=20\;{\mathrm{meV}} $ and strength $ S=1\times10^{-18}~\mathrm{cm^2{\cdot}eV} $. (b) Effect of different longitudinal temperatures of the electron beam, $ {{k}_{{\mathrm{B}}}T}_{/ / }=0.1, 0.5, 1~{\mathrm{meV}} $, on the DR peak shape and rate coefficient when the transverse temperature $ {k}_{{\mathrm{B}}}{T}_{\perp }=5\;{\mathrm{meV}} $ is constant, with the resonance energy $ {E}_{{\mathrm{d}}}=20\;{\mathrm{meV}} $ and strength $ S=1\times10^{-18}~\mathrm{cm^2{\cdot}eV} $. (c) Simulation peaks of SRing and CSRe at the same resonance energy, the temperatures used for SRing and CSRe are $ {k}_{{\mathrm{B}}}{T}_{\perp }=5\;{\mathrm{meV}}, {{k}_{{\mathrm{B}}}T}_{/ / }=0.1\;{\mathrm{meV}} $ and $ {k}_{{\mathrm{B}}}{T}_{\perp }=80\;{\mathrm{meV}}, {{k}_{{\mathrm{B}}}T}_{/ / }=1\;{\mathrm{meV}} $, respectively.

    图 8  双电子复合实验模拟谱 (a)类锂$ {}_{54}^{129}{{\mathrm{X}}{\mathrm{e}}}^{51+} $离子; (b) 类锂$ {}_{92}^{238}{{\mathrm{U}}}^{89+} $离子. 图中红色实线代表SRing的模拟结果, 蓝色实线代表CSRe的模拟结果, 而黑色竖线表示由FAC程序计算得出的双电子复合共振位置和强度

    Figure 8.  DR experimental simulation spectra: (a) Li-like $ {}_{54}^{129}{{\mathrm{X}}{\mathrm{e}}}^{51+} $ ions; (b) Li-like $ {}_{92}^{238}{{\mathrm{U}}}^{89+} $ ions. The red solid line represents the simulation results at SRing, the black solid line represents the simulation results at CSRe, and the black vertical lines represent the positions and strengths of DR resonances calculated by the FAC code.

    图 9  (a) 类锂离子$ {2{\mathrm{s}}}_{1/2}—{2{\mathrm{p}}}_{1/2} $能级跃迁中的各种效应贡献及相关实验测量结果. 使用SRing电子靶可以在高精度下测量类锂238U89+离子的$ {2{\mathrm{s}}}_{1/2}—{2{\mathrm{p}}}_{1/2} $跃迁能, 从而为严格检验强场下的高阶QED效应提供可能. (b) 类锂238, 234U89+同位素离子对应的双电子复合谱

    Figure 9.  (a) Contributions of various effects to the transition energy of $ {2{\mathrm{s}}}_{1/2}—{2{\mathrm{p}}}_{1/2} $ and the results of current experimental measurements. By utilizing the electron-target of SRing, we can measure the $ {2{\mathrm{s}}}_{1/2}—{2{\mathrm{p}}}_{1/2} $ transition energy in 238U89+ ions with high-precision, which provides an opportunity for a stringent test of higher-order QED effects in strong-field. (b) DR spectrum for lithium-like 238, 234U89+ isotopes.

    表 1  超冷电子靶的主要物理设计参数

    Table 1.  Main physical design parameters of the ultracold electron-target.

    物理量 参数
    阴极半径/mm 4
    电子束能量/keV 10—80
    相互作用区电子束密度/(106 cm–3) 2
    电子束最大流强/A 0.2
    电子枪区最大磁场强度/T 1.2
    相互作用段最大磁场强度/T 0.04
    最大绝热参数 0.2
    最大绝热展开因子 30
    最大加速电场/(kV·cm–1) 2.3
    DownLoad: CSV
    Baidu
  • [1]

    Savin D W, Bartsch T, Chen M H, Kahn S M, Liedahl D A, Linkemann J, Müller A, Schippers S, Schmitt M, Schwalm D, Wolf A 1997 Astrophys. J. 489 L115Google Scholar

    [2]

    Savin D W, Behar E, Kahn S M, Gwinner G, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Badnell N R, Chen M H, Gorczyca T W 2002 Astrophys. J. 138 337Google Scholar

    [3]

    Savin D W, Gwinner G, Grieser M, Repnow R, Schnell M, Schwalm D, Wolf A, Zhou S G, Kieslich S, Muller A, Schippers S, Colgan J, Loch S D, Badnell N R, Chen M H, Gu M F 2006 Astrophys. J. 642 1275Google Scholar

    [4]

    Savin D W, Kahn S M, Gwinner G, Grieser M, Repnow R, Saathoff G, Schwalm D, Wolf A, Muller A, Schippers S, Zavodszky P A, Chen M H, Gorczyca T W, Zatsarinny O, Gu M F 2003 Astrophys. J. Suppl. Ser. 147 421Google Scholar

    [5]

    Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Brandau C, Hoffknecht A, Muller A, Schippers S, Chen M H, Badnell N R 1999 Astrophys. J. Suppl. Ser. 123 687Google Scholar

    [6]

    Savin D W, Kahn S M, Linkemann J, Saghiri A A, Schmitt M, Grieser M, Repnow R, Schwalm D, Wolf A, Bartsch T, Muller A, Schippers S, Chen M H, Badnell N R, Gorczyca T W, Zatsarinny O 2002 Astrophys. J. 576 1098Google Scholar

    [7]

    Schmidt E W, Schippers S, Müller A, Lestinsky M, Sprenger F, Grieser M, Repnow R, Wolf A, Brandau C, Lukić D, Schnell M, Savin D W 2006 Astrophys. J. 641 L157Google Scholar

    [8]

    Larsson M 1995 Rep. Prog. Phys. 58 1267Google Scholar

    [9]

    Phaneuf R A, Havener C C, Dunn G H, Müller A 1999 Rep. Prog. Phys. 62 1143Google Scholar

    [10]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2001 Phys. Rev. Lett. 86 5027Google Scholar

    [11]

    Brandau C, Kozhuharov C, Müller A, et al. 2003 Phys. Rev. Lett. 91 073202Google Scholar

    [12]

    Wang S X, Brandau C, Fritzsche S, Fuchs S, Harman Z, Kozhuharov C, Müller A, Steck M, Schippers S 2024 Eur. Phys. J. D 78 122Google Scholar

    [13]

    Brandau C, Kozhuharov C, Lestinsky M, Müller A, Schippers S, Stöhlker T 2015 Phys. Scr. 2015 014022Google Scholar

    [14]

    Bates D R, Massey H S W 1943 Philos. Trans. R. Soc. London, Ser. A 239 269Google Scholar

    [15]

    Badnell N R, Pindzola M S, Andersen L H, Bolko J, Schmidt H T 1991 J. Phys. B: At. Mol. Opt. Phys. 24 4441Google Scholar

    [16]

    LaGattuta K, Hahn Y 1981 Phys. Rev. A 24 785Google Scholar

    [17]

    Brooks R, Datla R, Griem H R 1978 Phys. Rev. Lett. 41 107Google Scholar

    [18]

    Müller A, Belić D, DePaola B, Djurić N, Dunn G, Mueller D, Timmer C 1987 Phy. Rev. A 36 599Google Scholar

    [19]

    Schippers S 2015 Nucl. Instrum. Methods Phys. Res. , Sect. B 350 61Google Scholar

    [20]

    Shevelko V, Tawara H 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer) pp283–306

    [21]

    Schuch R, Böhm S 2007 J. Phys. Conf. Ser. 88 012002Google Scholar

    [22]

    Huang Z K, Wen W Q, Wang H B, Xu X, Zhu L F, Chuai X Y, Yuan Y J, Zhu X L, Han X Y, Mao L J, Li J, Ma X M, Yan T L, Yang J C, Xiao G Q, Xia J W, Ma X 2015 Phys. Scr. T166 014023Google Scholar

    [23]

    Huang Z K, Wang S X, Wen W Q, Wang H B, Ma W L, Chen C Y, Zhang C Y, Chen D Y, Huang H K, Shao L, Liu X, Zhou X P, Mao L J, Li J, Ma X M, Tang M T, Yang J C, Yuan Y J, Zhang S F, Zhu L F, Ma X W 2023 Chin. Phys. B 32 073401Google Scholar

    [24]

    Danared H, Andler G, Bagge L, Herrlander C J, Hilke J, Jeansson J, Källberg A, Nilsson A, Paál A, Rensfelt K G, Rosengård U, Starker J, af Ugglas M 1994 Phys. Rev. Lett. 72 3775Google Scholar

    [25]

    Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001Google Scholar

    [26]

    Schippers S, Schmidt E W, Bernhardt D, Yu D, Muller A, Lestinsky M, Orlov D A, Grieser M, Repnow R, Wolf A 2007 Phys. Rev. Lett. 98 033001Google Scholar

    [27]

    Brandau C, Kozhuharov C, Harman Z, et al. 2008 Phys. Rev. Lett. 100 073201Google Scholar

    [28]

    Huang Z K, Wen W Q, Xu X, et al. 2018 Astrophys. J. Suppl. Ser. 235 2Google Scholar

    [29]

    Wang S X, Xu X, Huang Z K, Wen W Q, Wang H B, Khan N, Preval S P, Badnell N R, Schippers S, Mahmood S, Dou L J, Chuai X Y, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Tang M T, Yin D Y, Yang J C, Ma X, Zhu L F 2018 Astrophys. J. 862 2Google Scholar

    [30]

    Wang S X, Huang Z K, Wen W Q, et al. 2019 Astron. Astrophys. 627 A171Google Scholar

    [31]

    Wang S X, Huang Z K, Wen W Q, et al. 2022 Phys. Rev. A 106 042808Google Scholar

    [32]

    Huang Z K, Wen W Q, Wang S X, Khan N, Wang H B, Chen C Y, Zhang C Y, Preval S P, Badnell N R, Ma W L, Liu X, Chen D Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yang W Q, Yang J C, Yuan Y J, Zhu L F, Ma X 2020 Phys. Rev. A 102 062823Google Scholar

    [33]

    邵林, 黄忠魁, 汶伟强, 汪书兴, 黄厚科, 马万路, 刘畅, 汪寒冰, 陈冬阳, 刘鑫, 周晓鹏, 赵冬梅, 张少锋, 朱林繁, 马新文 2024 73 123402Google Scholar

    Shao L, Huang Z K, Wen W Q, Wang S X, Huang H K, Ma W L, Liu C, Wang H B, Chen D Y, Liu X, Zhou X P, Zhao D M, Zhang S F, Zhu L F, Ma X W 2024 Acta Phys. Sin. 73 123402Google Scholar

    [34]

    马余刚, 赵红卫 2020 中国科学: 物理学 力学 天文学 50 112001

    Ma Y G, Zhao H W 2020 Sci. Sin. Phys. Mech. Astron. 50 112001

    [35]

    马新文, 张少锋, 汶伟强, 杨杰, 朱小龙, 钱东斌, 闫顺成, 张鹏鸣, 郭大龙, 汪寒冰, 黄忠魁 2020 中国科学: 物理学 力学 天文学 50 112008Google Scholar

    Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin. Phys. Mech. Astron. 50 112008Google Scholar

    [36]

    Huang Z K, Wen W Q, Xu X, Wang H B, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 135Google Scholar

    [37]

    Danared H 1995 Phys. Scr. T59 121Google Scholar

    [38]

    Zaghloul M R 2017 ACM Trans. Math. Softw. 44 22Google Scholar

    [39]

    Dou L, Xie L, Zhang D, Dong C, Wen W, Huang Z, Ma X 2017 Euro. Phys. J. D 71 128Google Scholar

    [40]

    李传莹, 刘晓菊, 孟广为, 王建国 2010 59 6044Google Scholar

    Li C Y, Liu X J, Meng G W, Wang J G 2010 Acta Phys. Sin. 59 6044Google Scholar

    [41]

    Danared H 1993 Nucl. Instrum. Methods Phys. Res., Sect. A 335 397Google Scholar

    [42]

    张平文, 李铁军 2007 数值分析 (北京: 北京大学出版社) 第161页

    Zhang P W, Li T J 2007 Numerical Analysis (Beijing: Beijing University Press) p161

    [43]

    Danared H 1998 Hyperfine Interact. 115 61Google Scholar

    [44]

    Zubova N A, Kozhedub Y S, Shabaev V M, Tupitsyn I I, Volotka A V, Plunien G, Brandau C, Stöhlker T 2014 Phys. Rev. A 90 062512Google Scholar

    [45]

    啜晓亚, 黄忠魁, 汶伟强, 汪寒冰, 许鑫, 汪书兴, 李冀光, 豆丽君, 赵冬梅, 朱小龙, 冒立军, 殷达钰, 杨建成, 原有进, 马新文 2018 原子核物理评论 35 196Google Scholar

    Chuai X Y, Huang Z K, Wen W Q, Wang H B, Xu X, Wang S X, Li J G, Dou L J, Zhao D M, Zhu X L, Mao L J, Yin D Y, Yang J C, Yuan Y J, Ma X W 2018 Nucl. Phys. Rev. 35 196Google Scholar

  • [1] Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren. Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He. Acta Physica Sinica, 2024, 73(24): 240701. doi: 10.7498/aps.73.20241290
    [2] Shao Lin, Huang Zhong-Kui, Wen Wei-Qiang, Wang Shu-Xing, Huang Hou-Ke, Ma Wan-Lu, Liu Chang, Wang Han-Bing, Chen Dong-Yang, Liu Xin, Zhou Xiao-Peng, Zhao Dong-Mei, Zhang Shao-Feng, Zhu Lin-Fan, Ma Xin-Wen. Dielectronic recombination experiment of Na-like Kr25+ at heavy ion storage ring CSRe. Acta Physica Sinica, 2024, 73(12): 123402. doi: 10.7498/aps.73.20240211
    [3] Zhang Bing-Zhang,  Song Zhang-Yong,  Zhang Ming-Wu,  Liu Xuan,  Qian Cheng,  Fang Xin,  Shao Chao-Jie,  Wang Wei,  Liu Jun-Liang,  Zhu Zhi-Chao,  Sun Liang-Ting,  Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [4] Zhang Bing-Zhang, Song Zhang-Yong, Zhang Ming-Wu, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Zhu Zhi-Chao, Sun Liang-Ting, Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [5] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [6] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [7] Fu Yan-Biao, Wang Xu-Dong, Su Mao-Gen, Dong Chen-Zhong. Theoretical studies of dielectronic recombination for Au34+ ions. Acta Physica Sinica, 2016, 65(3): 033401. doi: 10.7498/aps.65.033401
    [8] Wang Xing, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Xu Ge, Sun Yuan-Bo, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Yu Yang, Li Yong-Feng, Zhang Xiao-An, Li Yao-Zong, Liang Chang-Hui, Xiao Guo-Qing. Multiple ionization effect of Ta induced by heavy ions. Acta Physica Sinica, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [9] Yang Jian-Hui, Fan Qiang, Zhang Jian-Ping. The study of dielectronic recombination (DR) rate coefficient for ground state of Ne-like isoelectronic sequence ions. Acta Physica Sinica, 2012, 61(19): 193101. doi: 10.7498/aps.61.193101
    [10] Wang Wei, Jiang Gang. Study on rate coefficient of dielectronic recombination in dense plasma based on doubly excited state. Acta Physica Sinica, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [11] Wang Li, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The coulomb potential energy effect on the intensity of the characteristic lines at highly charged ion incendence on Al surface. Acta Physica Sinica, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [12] Shi Ying-Long, Dong Chen-Zhong, Zhang Deng-Hong, Fu Yan-Biao. Theoretical study on the dielectronic recombination of highly charged mercury and uranium ions. Acta Physica Sinica, 2008, 57(1): 88-95. doi: 10.7498/aps.57.88
    [13] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [14] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [15] Wang Yu-Yu, Zhao Yong-Tao, Xiao Guo-Qing, Fang Yan, Zhang Xiao-An, Wang Tie-Shan, Wang Shi-Wei, Peng Hai-Bo. Electron emission induced by the interaction of highly charged ions 207Pbq+(24≤q≤36) with solid surface of Si(110). Acta Physica Sinica, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [16] Zhang Deng-Hong, Dong Chen-Zhong, Xie Lu-You, Ding Xiao-Bin, Fu Yan-Biao. Relativistic theoretical study on the KLL dielectronic recombination of helium-like ions. Acta Physica Sinica, 2006, 55(1): 112-118. doi: 10.7498/aps.55.112
    [17] Dong Chen-Zhong, Fu Yan-Biao. Theoretical studies of dielectronic recombination and resonant transfer excitation for highly ionized Cu18+ ions. Acta Physica Sinica, 2006, 55(1): 107-111. doi: 10.7498/aps.55.107
    [18] Yi You-Gen, Zheng Zhi-Jian, Yan Jun, Li Ping, Fang Quan-Yu, Qiu Yu-Bo. Dielectronic recombination from Fe like Au^53+ to Ga like Au^47+ ions*. Acta Physica Sinica, 2002, 51(12): 2740-2744. doi: 10.7498/aps.51.2740
    [19] Sheng Yong, Jiang Gang, Zhu Zheng-He. . Acta Physica Sinica, 2002, 51(3): 501-505. doi: 10.7498/aps.51.501
    [20] Jiao Rong-Zhen, Cheng Xin-Lu, Yang Xiang-Dong, Zhu Jun. . Acta Physica Sinica, 2002, 51(8): 1755-1758. doi: 10.7498/aps.51.1755
Metrics
  • Abstract views:  424
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2024
  • Accepted Date:  26 November 2024
  • Available Online:  25 December 2024
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map