Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+

Liu Xin Zhou Xiao-Peng Wen Wei-Qiang Lu Qi-Feng Yan Cheng-Long Xu Guo-Qin Xiao Jun Huang Zhong-Kui Wang Han-Bing Chen Dong-Yang Shao Lin Yuan Yang Wang Shu-Xing Ma Wan-Lu Ma Xin-Wen

Citation:

Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+

Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen
PDF
HTML
Get Citation
  • The precise measurement of the transition wavelength of the fine structure of highly charged ions can not only test basic physical theories including the quantum electrodynamics effect and the electronic correlation effect but also provide key atomic data for astrophysics and fusion plasma physics. Furthermore, highly charged ions are considered as a potential candidate for optical clocks with extremely ultra-high precision. In this work, a new spectral calibration system is built in a high-temperature superconducting electron beam ion trap (SH-HtscEBIT) in the Institute of Modern Physics, Fudan University, and the uncertainty of its spectrum wavelength measurement is evaluated by combining internal and external calibrations. The minimum wavelength uncertainty caused by the new spectral calibration system in the visible light band reaches 0.002 nm. On this basis, the precise measurement of 2s22p 2P1/22P3/2 M1 transition wavelength for boron-like Ar13+ is performed at the SH-HtscEBIT by utilizing the new calibration system. The experimentally measured transition wavelength is (441.2567 ± 0.0026) nm. It is currently the experimental result with the highest measurement accuracy of spectroscopy of highly charged ions at the SH-HtscEBIT, which lays the foundation for the precise measurement of the hyperfine splitting and isotope shift of highly charged ions in the future experiments.
      Corresponding author: Wen Wei-Qiang, wenweiqiang@impcas.ac.cn ; Xiao Jun, xiao_jun@fudan.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11904371, 11974080), the Strategic Leading Science and Technology Project of Chinese Academy of Sciences (Grant No. XDB34020000), and the subject funded by the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
    [1]

    Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506Google Scholar

    [2]

    Lisse C M, Christian D J, Dennerl K M K J, Petre R, Weaver H A, Wolk S J 2001 Science 292 1343Google Scholar

    [3]

    Liang G Y, Badnell N R, Zhao G 2012 Astron. Astrophys. 547 A87Google Scholar

    [4]

    Shull J M, Smith B D, Danforth C W 2012 Astrophys. J. 759 23Google Scholar

    [5]

    Collaboration H 2017 Nature 551 478Google Scholar

    [6]

    Reinhardt S, Saathoff G, Buhr H, et al. 2007 Nat. Phys. 3 861Google Scholar

    [7]

    Botermann B, Bing D, Geppert C, et al. 2014 Phys. Rev. Lett. 113 120405Google Scholar

    [8]

    Draganić I, López-Urrutia J C, DuBois R, et al. 2003 Phys. Rev. Lett. 91 183001Google Scholar

    [9]

    Beiersdorfer P, Chen H, Thorn D B, Träbert E 2005 Phys. Rev. Lett. 95 233003Google Scholar

    [10]

    Kozhedub Y S, Glazov D A, Artemyev A N, et al. 2007 Phys. Rev. A 76 012511Google Scholar

    [11]

    Malyshev A V, Volotka A V, Glazov D, Tupitsyn I I, Shabaev V M, Plunien G 2014 Phys. Rev. A 90 062517Google Scholar

    [12]

    Ullmann J, Andelkovic Z, Brandau C, et al. 2017 Nat. Commun. 8 15484Google Scholar

    [13]

    Tupitsyn I I, Shabaev V M, López-Urrutia J C, Draganić I, Orts R S, Ullrich J 2003 Phys. Rev. A 68 022511Google Scholar

    [14]

    Brandau C, Kozhuharov C, Harman Z, et al. 2008 Phys. Rev. Lett. 100 073201Google Scholar

    [15]

    Shabaev V M, Tomaselli M, Kuhl T, Artemyev A N, Yerokhin V A 1997 Phys. Rev. A 56 252Google Scholar

    [16]

    Vogel M, Quint W 2013 Ann. Phys. 525 505Google Scholar

    [17]

    Derevianko A, Dzuba V A, Flambaum V V 2012 Phys. Rev. Lett. 109 180801Google Scholar

    [18]

    Yudin V, Taichenachev A, Derevianko A 2014 Phys. Rev. Lett. 113 233003Google Scholar

    [19]

    Schmöger L, Versolato O O, Schwarz M, et al. 2015 Science 347 1233Google Scholar

    [20]

    Yu Y M, Sahoo B K 2016 Phys. Rev. A 94 062502Google Scholar

    [21]

    Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [22]

    Micke P, Leopold T, King S A, et al. 2020 Nature 578 60Google Scholar

    [23]

    Safronova M S, Budker D, Demille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [24]

    Marrs R E, Levine M A, Knapp D A, Henderson J R 1988 Phys. Rev. Lett. 60 1715Google Scholar

    [25]

    Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64Google Scholar

    [26]

    Liang S Y, Zhang T X, Guan H, et al. 2021 Phys. Rev. A 103 022804Google Scholar

    [27]

    Kimura N, Kodama R, Suzuki K, et al. 2019 Phys. Rev. A 100 052508Google Scholar

    [28]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [29]

    Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S A, Dipti, Borovik A, Gwinner G, Villari A C C, Ralchenko Y, Takacs E 2018 Phys. Rev. A 98 052502Google Scholar

    [30]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 Proceedings of the 4th International Particle Accelerator Conference, IPAC2013 (JACoW) Shanghai, China, May 12–17, 2013 p434

    [31]

    Lu Q, Yan C L, Xu G Q, Fu N, Yang Y, Zou Y, Volotka A V, Xiao J, Nakamura N, Hutton R 2020 Phys. Rev. A 102 042817Google Scholar

    [32]

    Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Plasma Fusion Res. 14 1201021Google Scholar

    [33]

    Mäckel V, Klawitter R, Brenner G, Crespo López-Urrutia J R, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar

    [34]

    Katai R, Morita S, Goto M 2007 J. Quant. Spectrosc. Radiat. Transfer 107 120Google Scholar

    [35]

    Orts R S, Harman Z, López-Urrutia J R C, et al. 2006 Phys. Rev. Lett. 97 103002Google Scholar

    [36]

    Prior M H 1987 J. Opt. Soc. Am. B 4 144Google Scholar

    [37]

    Kaufman V, Sugar J 1986 J. Phys. Chem. Ref. Data 15 321Google Scholar

    [38]

    Edlén B 1983 Phys. Scr. 28 483Google Scholar

    [39]

    Natarajan L 2021 Phys. Scr. 96 105402Google Scholar

    [40]

    Yu Y M, Sahoo B K 2019 Phys. Rev. A 99 022513Google Scholar

    [41]

    Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518Google Scholar

    [42]

    Artemyev A, Shabaev V, Tupitsyn I, Plunien G, Yerokhin V 2007 Phys. Rev. Lett. 98 173004Google Scholar

    [43]

    Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850Google Scholar

    [44]

    Egl A, Arapoglou I, Höcker M, et al. 2019 Phys. Rev. Lett. 123 123001Google Scholar

  • 图 1  电子束离子阱的原理结构图以及其中发生的一些原子物理过程

    Figure 1.  Schematic diagram of the electron beam ion trap and some of the atomic physical processes in EBIT.

    图 2  Andor Shamrock 303i光谱仪内部结构图

    Figure 2.  Inner structure of the Andor Shamrock 303i spectrograph.

    图 3  三种不同的光谱校刻方案 (a)使用校刻灯在EBIT外照射直接校刻方案; (b)通过观测注入EBIT的惰性气体谱线在EBIT内直接内校刻方案; (c)使用校刻灯结合新的共轭光谱校刻系统的外校刻方案

    Figure 3.  Three different spectral calibration schemes: (a) Direct calibration scheme by using the calibration lamp at outside of the EBIT; (b) direct calibration scheme in the EBIT by observing the inert gas spectrum line injected into the EBIT; (c) the external calibration scheme using the calibration lamp combined with the new conjugate spectrum calibration system.

    图 4  (a)使用新校刻系统测量的Ne灯光谱图与注入EBIT的Ne原子线的光谱图; (b)校刻系统多次测试结果(正负表示偏移方向), 黑色实线表示偏移的算数平均值

    Figure 4.  (a) Spectrum of Ne lamp measured with the new calibration system and the observed spectrum of Ne atomic line injected into the EBIT; (b) the multiple test results of the proof system (positive and negative indicate the offset direction), the black solid line indicates the arithmetic average of the offset.

    图 5  (a) Kr灯校刻线的光谱图; (b) 使用一阶(方框)、二阶(圆)和三阶(叉)多项式拟合色散函数的所有残差; (c) 二阶和三阶多项式拟合残差的放大, 浅色带为二阶多项式拟合的一倍标准差置信带

    Figure 5.  (a) Spectrum of Kr lamp calibration line; (b) all residuals from the dispersion function fit, using first (square), second (circle), and third (cross) degree polynomials; (c) second- and third-degree polynomial residuals (enlarged scale), the light-colored band is a 1-σ confidence band.

    图 6  (a) 用SH-HtscEBIT在415—465 nm范围内, 获得了标称电子束能量为780, 800, 810, 820和870 eV Ar13+离子1s22s22p 2P基态M1跃迁的可见光谱; (b) Ar13+的441 nm跃迁谱线高斯拟合示例; (c) Ar13+跃迁波长的多次测量结果, 图中深色直线表示加权平均波长, 浅色带表示加权平均波长的不确定度

    Figure 6.  (a) With SH-HtscEBIT in the range of 415–465 nm, the visible spectrum of the M1 transition for the 2s22p 2P ground term of Ar13+ with nominal electron beam energy of 780, 800, 810, 820 and 870 eV were obtained; (b) Gaussian fitting example of 441 nm transition spectrum of Ar13+; (c) multiple measurement results of Ar13+ transition wavelength, the dark line in the figure represents the weighted average wavelength, and the light color band represents the uncertainty of the weighted average wavelength.

    表 1  SH-HtscEBIT的参数[30]

    Table 1.  Parameters of SH-HtscEBIT.

    参数设计指标
    电子束能量30—4000 eV
    电子束流强10 mA
    电子束流半径~65 μm
    真空度~1.0 × 10–9 Torr
    液氮消耗速率0.6—1.5 L/h
    磁场强度0—0.25 T
    DownLoad: CSV

    表 2  Ar13+的光谱校刻谱线位置与NIST数据库中参考波长

    Table 2.  Pixel positions of the fitted Ar13+ spectral calibration lines and the corresponding reference wavelength in the NIST database.

    峰中心像素NIST波长/nm
    457.350(6)427.39694
    572.865(22)431.95795
    682.297(14)436.26416
    716.578(10)437.61216
    915.031(9)445.39175
    939.998(13)446.36900
    1039.015(14)450.23543
    DownLoad: CSV

    表 3  Ar13+离子测量波长的不确定度

    Table 3.  Uncertainties of the measured wavelengths for Ar13+.

    不确定度来源对波长不确定度的贡献/pm
    线形中心0.58
    色散函数0.46
    校刻线0.01
    校刻系统1.76
    总不确定度2.6
    DownLoad: CSV

    表 4  Ar13+跃迁波长的实验与理论结果比较 (空气中)

    Table 4.  Comparison of experimental and theoretical results of transition wavelength Ar13+ (in Air).

    来源年份类型波长/nm
    This work2021实验测量441.2567(26)
    文献[33]2011实验测量441.25568(26)
    文献[34]2007实验测量441.257(2)
    文献[35]2006实验测量441.2556(1)
    文献[8]2003实验测量441.2559(1)
    文献[25]1997实验测量441.250(3)
    文献[36]1987实验测量441.23(9)
    文献[37]1986天文观测441.24(2)
    文献[38]1983天文观测441.23(9)
    文献[39]2021理论计算440.90
    文献[40]2019理论计算442.7(70)
    文献[41]2013理论计算441.238(63)
    文献[42]2007理论计算441.261(70)
    文献[43]1996理论计算441.16(27)
    文献[37]1986理论计算441.6(4)
    文献[38]1983理论计算441.32
    DownLoad: CSV
    Baidu
  • [1]

    Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506Google Scholar

    [2]

    Lisse C M, Christian D J, Dennerl K M K J, Petre R, Weaver H A, Wolk S J 2001 Science 292 1343Google Scholar

    [3]

    Liang G Y, Badnell N R, Zhao G 2012 Astron. Astrophys. 547 A87Google Scholar

    [4]

    Shull J M, Smith B D, Danforth C W 2012 Astrophys. J. 759 23Google Scholar

    [5]

    Collaboration H 2017 Nature 551 478Google Scholar

    [6]

    Reinhardt S, Saathoff G, Buhr H, et al. 2007 Nat. Phys. 3 861Google Scholar

    [7]

    Botermann B, Bing D, Geppert C, et al. 2014 Phys. Rev. Lett. 113 120405Google Scholar

    [8]

    Draganić I, López-Urrutia J C, DuBois R, et al. 2003 Phys. Rev. Lett. 91 183001Google Scholar

    [9]

    Beiersdorfer P, Chen H, Thorn D B, Träbert E 2005 Phys. Rev. Lett. 95 233003Google Scholar

    [10]

    Kozhedub Y S, Glazov D A, Artemyev A N, et al. 2007 Phys. Rev. A 76 012511Google Scholar

    [11]

    Malyshev A V, Volotka A V, Glazov D, Tupitsyn I I, Shabaev V M, Plunien G 2014 Phys. Rev. A 90 062517Google Scholar

    [12]

    Ullmann J, Andelkovic Z, Brandau C, et al. 2017 Nat. Commun. 8 15484Google Scholar

    [13]

    Tupitsyn I I, Shabaev V M, López-Urrutia J C, Draganić I, Orts R S, Ullrich J 2003 Phys. Rev. A 68 022511Google Scholar

    [14]

    Brandau C, Kozhuharov C, Harman Z, et al. 2008 Phys. Rev. Lett. 100 073201Google Scholar

    [15]

    Shabaev V M, Tomaselli M, Kuhl T, Artemyev A N, Yerokhin V A 1997 Phys. Rev. A 56 252Google Scholar

    [16]

    Vogel M, Quint W 2013 Ann. Phys. 525 505Google Scholar

    [17]

    Derevianko A, Dzuba V A, Flambaum V V 2012 Phys. Rev. Lett. 109 180801Google Scholar

    [18]

    Yudin V, Taichenachev A, Derevianko A 2014 Phys. Rev. Lett. 113 233003Google Scholar

    [19]

    Schmöger L, Versolato O O, Schwarz M, et al. 2015 Science 347 1233Google Scholar

    [20]

    Yu Y M, Sahoo B K 2016 Phys. Rev. A 94 062502Google Scholar

    [21]

    Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [22]

    Micke P, Leopold T, King S A, et al. 2020 Nature 578 60Google Scholar

    [23]

    Safronova M S, Budker D, Demille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [24]

    Marrs R E, Levine M A, Knapp D A, Henderson J R 1988 Phys. Rev. Lett. 60 1715Google Scholar

    [25]

    Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64Google Scholar

    [26]

    Liang S Y, Zhang T X, Guan H, et al. 2021 Phys. Rev. A 103 022804Google Scholar

    [27]

    Kimura N, Kodama R, Suzuki K, et al. 2019 Phys. Rev. A 100 052508Google Scholar

    [28]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [29]

    Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S A, Dipti, Borovik A, Gwinner G, Villari A C C, Ralchenko Y, Takacs E 2018 Phys. Rev. A 98 052502Google Scholar

    [30]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 Proceedings of the 4th International Particle Accelerator Conference, IPAC2013 (JACoW) Shanghai, China, May 12–17, 2013 p434

    [31]

    Lu Q, Yan C L, Xu G Q, Fu N, Yang Y, Zou Y, Volotka A V, Xiao J, Nakamura N, Hutton R 2020 Phys. Rev. A 102 042817Google Scholar

    [32]

    Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Plasma Fusion Res. 14 1201021Google Scholar

    [33]

    Mäckel V, Klawitter R, Brenner G, Crespo López-Urrutia J R, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar

    [34]

    Katai R, Morita S, Goto M 2007 J. Quant. Spectrosc. Radiat. Transfer 107 120Google Scholar

    [35]

    Orts R S, Harman Z, López-Urrutia J R C, et al. 2006 Phys. Rev. Lett. 97 103002Google Scholar

    [36]

    Prior M H 1987 J. Opt. Soc. Am. B 4 144Google Scholar

    [37]

    Kaufman V, Sugar J 1986 J. Phys. Chem. Ref. Data 15 321Google Scholar

    [38]

    Edlén B 1983 Phys. Scr. 28 483Google Scholar

    [39]

    Natarajan L 2021 Phys. Scr. 96 105402Google Scholar

    [40]

    Yu Y M, Sahoo B K 2019 Phys. Rev. A 99 022513Google Scholar

    [41]

    Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518Google Scholar

    [42]

    Artemyev A, Shabaev V, Tupitsyn I, Plunien G, Yerokhin V 2007 Phys. Rev. Lett. 98 173004Google Scholar

    [43]

    Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850Google Scholar

    [44]

    Egl A, Arapoglou I, Höcker M, et al. 2019 Phys. Rev. Lett. 123 123001Google Scholar

  • [1] Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren. Experimental measurement of state selective double electron capture in 1.4-20 keV/u Ar8+ collision with He. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241290
    [2] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun. Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions. Acta Physica Sinica, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [3] Tu Bing-Sheng. Precise measurements of electron g factors in bound states of few-electron ions. Acta Physica Sinica, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [4] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [5] Zhang Da-Cheng, Ge Han-Xing, Ba Yu-Lu, Wen Wei-Qiang, Zhang Yi, Chen Dong-Yang, Wang Han-Bing, Ma Xin-Wen. Prospect for attosecond laser spectra of highly charged ions. Acta Physica Sinica, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [6] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [7] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] Guan Hua, Huang Yao, Li Cheng-Bin, Gao Ke-Lin. 40Ca+ optical frequency standards with high accuracy. Acta Physica Sinica, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [9] Mu Xiu-Li, Li Chuan-Liang, Deng Lun-Hua, Wang Hai-Ling. Spectra of I2+ for possible measurement of α and μ constant. Acta Physica Sinica, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [10] Zhang Shao-Qing, Xie Juan, Zhang Xiao-Ping, Zhi Qi-Jun. Decay law of allowed and forbidden transitions in -decay half-lives. Acta Physica Sinica, 2016, 65(9): 092101. doi: 10.7498/aps.65.092101
    [11] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [12] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [13] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [14] Peng Hai-Bo, Wang Tie-Shan, Han Yun-Cheng, Ding Da-Jie, Xu He, Cheng Rui, Zhao Yong-Tao, Wang Yu-Yu. Study of channeling effect by impact of highly charged ions on crystal surface of Si(110). Acta Physica Sinica, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [15] Wang Li, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The coulomb potential energy effect on the intensity of the characteristic lines at highly charged ion incendence on Al surface. Acta Physica Sinica, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [16] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [17] Wan Jian-Jie, Xie Lu-You, Dong Chen-Zhong, Jiang Jun, Yan Jun. Theoretical study of forbidden M1, M2, E2 transitions for highly charged Ni-like ions. Acta Physica Sinica, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [18] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] Zhang Xiao-An, Zhao Yong-Tao, Li Fu-Li, Yang Zhi-Hu, Xiao Guo-Qing, Zhan Wen-Long. Atomic and ionic light emission spectra of dipole transition and forbidden transition induced by the impact of 126Xe30+ on Ni solid surface. Acta Physica Sinica, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [20] Yuan Xing-Qiu, Chen Chong-Yang, Li Hui, Zhao Tai-Zhe, Guo Wen-Kang, Xu Ping. Numerical simulation of the evolution of highly charged ions in an electron-bea m ion trap. Acta Physica Sinica, 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
Metrics
  • Abstract views:  6567
  • PDF Downloads:  174
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2021
  • Accepted Date:  05 October 2021
  • Available Online:  21 January 2022
  • Published Online:  05 February 2022

/

返回文章
返回
Baidu
map