-
高电荷态离子(highly charged ion,HCI)的精细结构及辐射跃迁性质的精确测量不仅可以检验基本物理模型,包括:强场量子电动力学(quantum electrodynamics,QED)效应、电子关联效应、相对论效应、原子核效应等,而且能够为天体物理和聚变等离子体物理提供关键原子物理参数。相对于研究较多的类氢和类锂离子体系,类硼离子的精细结构禁戒跃迁的相对论效应和QED效应的贡献很大,高精度实验测量与理论计算为进一步检验多电子体系的基本物理模型提供了重要途径。此外,类硼离子也被认为是最佳的高电荷态离子光钟候选体系。本文主要介绍了类硼离子基态2P3/2-2P1/2跃迁的实验和理论研究最新进展,概述了其精细结构和超精细结构的研究现状,并讨论了使用电子束离子阱结合高分辨光谱学实验技术开展类硼离子超精细分裂实验测量的方案,为未来开展类硼离子超精细分裂实验研究并在更高精度上检验QED效应,提取原子核磁化分布半径,检验相关的核结构模型等研究提供了参考。The precise measurement of the fine structure and radiative transition properties of highly charged ions (HCI) is essential for testing fundamental physical models, including strong-field quantum electrodynamics (QED) effects, electron correlation effects, relativistic effects, and nuclear effects. These measurements also provide critical atomic physics parameters for astrophysics and fusion plasma physics. Compared to the extensively studied hydrogen-like and lithium-like ion systems, boron-like ions exhibit significant contributions from relativistic and QED effects in their fine structure forbidden transitions. High-precision experimental measurements and theoretical calculations of these systems offer important avenues for further testing fundamental physical models in multi-electron systems. Additionally, boron-like ions are considered promising candidates for HCI optical clocks. This paper presents the latest advancements in experimental and theoretical research on the ground state 2P3/2-2P1/2 transition in boron-like ions, summarizing the current understanding of their fine and hyperfine structures. It also discusses a proposed experimental setup for measuring the hyperfine splitting of boron-like ions using an electron beam ion trap combined with high-resolution spectroscopy. This proposal aims to provide a reference for future experimental research on the hyperfine splitting of boron-like ions, with the goal of testing QED effects at higher precision, extracting nuclear magnetization distribution radii, and validating relevant nuclear structure models.
-
Keywords:
- highly charged ion /
- hyperfine structure /
- quantum electrodynamics /
- highly charged ion optical clock
-
[1] Beyer H F, Shevelko V P 2003 Introduction to the Physics of Highly Charged Ions (Institute of Physics Publishing, wholly owned by The Institute of Physics, London: IOP Publishing Ltd)
[2] Indelicato P 2019 J. Phys. B: At., Mol. Opt. Phys. 52 232001
[3] Nörtershäuser W 2011 Hyperfine Interact. 199 131
[4] Fawcett B C, Gabriel A H, Paget T M 1971 J. Phys. B: At., Mol. Opt. Phys. 4 986
[5] Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 Astron. Astrophys. 365 L329
[6] Edlén B 1983 Phys. Scr. 28 483
[7] Flower D, Nussbaumer H 1975 Astron. Astrophys. 45 349
[8] Sugar J, Kaufman V, Cooper D 1982 Phys. Scr. 26 293
[9] Wang W, Liu X-W, Zhang Y, Barlow M 2004 Astron. Astrophys. 427 873
[10] Stencel R E, Linsky J L, Brown A, Jordan C, Carpenter K G, Wing R F, Czyzak S 1981 Mon. Not. R. Astron. Soc. 196 47P
[11] Brekke P, Kjeldseth-Moe O, Bartoe J-D F, Brueckner G E 1991 Astrophysical Journal Supplement 75 1337
[12] King S A, Spieß L J, Micke P, Wilzewski A, Leopold T, Benkler E, Lange R, Huntemann N, Surzhykov A, Yerokhin V A, López-Urrutia J R C, Schmidt P O 2022 Nature 611 43
[13] Kozlov M G, Safronova M S, López-Urrutia J R C, Schmidt P O 2018 Review of Modern Physics 90 045005
[14] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Review of Modern Physics 90 025008
[15] Edlén B 1943 Z. Astrophys. 22 30
[16] Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64
[17] Draganič I, López-Urrutia J R C, DuBois R, Fritzsche S, Shabaev V M, Orts R S, Tupitsyn I I, Zou Y, Ullrich J 2003 Phys. Rev. Lett. 91 183001
[18] Orts R S, Harman Z, Crespo López-Urrutia J R, Artemyev A N, Bruhns H, Martínez A J G, Jentschura U D, Keitel C H, Lapierre A, Mironov V, Shabaev V M, Tawara H, Tupitsyn I I, Ullrich J, Volotka A V 2006 Phys. Rev. Lett. 97 103002
[19] Mackel V, Klawitter R, Brenner G, López-Urrutia J R C, Ullrich J 2011 Phys. Rev. A 107 143002
[20] Micke P, Leopold T, King S A, Benkler E, Spieß L J, Schmöger L, Schwarz M, Crespo López-Urrutia J R, Schmidt P O 2020 Nature 578 60
[21] Klaft I, Borneis S, Engel T, Fricke B, Grieser R, Huber G, Kühl T, Marx D, Neumann R, Schröder S, Seelig P, Völker L 1994 Phys. Rev. Lett. 73 2425
[22] Lochmann M, Jöhren R, Geppert C, Andelkovic Z, Anielski D, Botermann B, Bussmann M, Dax A, Frömmgen N, Hammen M, Hannen V, Kühl T, Litvinov Y A, López-Coto R, Stöhlker T, Thompson R C, Vollbrecht J, Volotka A, Weinheimer C, Wen W, Will E, Danyal Winters, Sánchez R, Nörtershäuser W 2014 Phys. Rev. A 90 030501(R)
[23] Ullmann J, Andelkovic Z, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y, Lochmann M, Maass B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Vollbrecht J, Weinheimer C, Nörtershäuser W 2015 J. Phys. B: At., Mol. Opt. Phys. 48 144022
[24] Ullmann J, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Trageser C, Vollbrecht o, Weinheimer C, Nörtershäuser W 2017 Nat. Commun. 8 15484
[25] Crespo López-Urrutia J R, Beiersdorfer P, Savin D W, Widmann K 1996 Phys. Rev. Lett. 77 826
[26] Crespo López-Urrutia J R, Beiersdorfer P, Widmann K, Birkett B B, Mårtensson-Pendrill A-M, Gustavsson M G H 1998 Phys. Rev. A 57 879
[27] Seelig P, Borneis S, Dax A, Engel T, Faber S, Gerlach M, Holbrow C, Huber G, Kühl T, Marx D, Meier K, Merz P, Quint W, Schmitt F, Tomaselli M, Völker L, Winter H, Würtz M, Beckert K, Franzke B, Nolden F, Reich H, Steck M, Winkler T 1998 Phys. Rev. Lett. 81 4824
[28] Beiersdorfer P, Utter S B, Wong K L, López-Urrutia J R C, Britten J A, Chen H, Harris C L, Thoe R S, Thorn D B, Träbert E, Gustavsson M G H, Forssén C, Mårtensson-Pendrill A-M 2001 Phys. Rev. A 64 032506
[29] Beiersdorfer P, Osterheld A L, Scofield J H, J. R. Crespo López-Urrutia, Widmann K 1998 Phys. Rev. Lett. 80 3022
[30] Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001
[31] Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003
[32] Shabaev V M, Shabaeva M B, Tupitsyn I I 1995 Phys. Rev. A 52 3686
[33] Shabaev V M, Artemyev A N, Yerokhin V A, Zherebtsov O M, Soff G 2001 Phys. Rev. Lett. 86 3959
[34] Volotka A V, Glazov D A, Andreev O V, Shabaev V M, Tupitsyn I I, Plunien G 2012 Phys. Rev. Lett. 108 073001
[35] Karr J P 2017 Nat. Phys. 13 533
[36] Nörtershäuser W, Ullmann J, Skripnikov L V, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Kraus F, Kresse B, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Privalov A F, Sánchez R, Scheibe B, Schmidt M, Schmidt S, Shabaev V M, Steck M, Stöhlker T, Thompson R C, Trageser C, Vogel M, Vollbrecht J, Volotka A V, Weinheimer C 2019 Hyperfine Interact. 240
[37] Skripnikov L V, Schmidt S, Ullmann J, Geppert C, Kraus F, Kresse B, Nörtershäuser W, Privalov A F, Scheibe B, Shabaev V M, Vogel M, Volotka A V 2018 Phys. Rev. Lett. 120 093001
[38] Volotka A V, Glazov D A, Tupitsyn I I, Oreshkina N S, Plunien G, Shabaev V M 2008 Phys. Rev. A 78 062507
[39] Glazov D A, Volotka A V, Andreev O V, Kosheleva V P, Fritzsche S, Shabaev V M, Plunien G, Stöhlker T 2019 Phys. Rev. A 99 062503
[40] Verdebout S, Nazé C, Jönsson P, Rynkun P, Godefroid M, Gaigalas G 2014 At. Data Nucl. Data Tables 100 1111
[41] Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111
[42] Verhey T R, Das B P, Perger W F 1987 Journal of Physics B: Atomic Molecular Optical Physics 20 3639
[43] Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850
[44] Charro E, López-Ferrero S, Martín I 2001 Journal of Physics B: Atomic Molecular Optical Physics 34 4243
[45] Tupitsyn I I, Volotka A V, Glazov D A, Shabaev V M, Plunien G, Crespo López-Urrutia J R, Lapierre A, Ullrich J 2005 Phys. Rev. A 72 062503
[46] Koc K 2005 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 235 46
[47] Volotka A, Glazov D, Plunien G, Shabaev V, Tupitsyn I 2006 Eur. Phys. J. D 38 293
[48] Koc K 2009 Eur. Phys. J. D 53 9
[49] Rynkun P, Jönsson P, Gaigalas G, Fischer C F 2012 At. Data Nucl. Data Tables 98 481
[50] Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518
[51] Fischer C F, Grant I P, Gaigalas G, Rynkun P 2016 Phys. Rev. A 93 022505
[52] Malyshev A V, Glazov D A, Volotka A V, Tupitsyn I I, Shabaev V M, Plunien G, Stöhlker T 2017 Phys. Rev. A 96 022512
[53] Bilal M, Volotka A V, Beerwerth R, Fritzsche S 2018 Phys. Rev. A 97 052506
[54] Natarajan L 2021 Phys. Scr. 96 105402
[55] Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu G Q, Xiao J, Volotka A V, Kozhedub Y S, Kaygorodov M Y, Huang Z K, Ma W L, Wang S X, Ma X 2021 Phys. Rev. A 104 062804
[56] Hinnov E, Suckewer S, Cohen S, Sato K 1982 Phys. Rev. A 25 2293
[57] Shabaev V M 1994 J. Phys. B: At., Mol. Opt. Phys. 27 5825
[58] Brandau C, Kozhuharov C, Muller A, Shi W, Schippers S, Bartsch T, Bohm S, Bohme C, Hoffknecht A, Knopp H, Grun N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stohlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202
[59] Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2000 Phys. Rev. Lett. 86 5027
[60] Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808
[61] Brandau C, Kozhuharov C (Shevelko V, Tawara H ed) 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer Berlin Heidelberg) pp283-306
[62] Huang Z K, Wen W Q, X. Xu c H B W, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instr. Meth. A 408 135
[63] Ma X, Wen W Q, Zhang S F, Yu D Y, Cheng R, Yang J, Huang Z K, Wang H B, Zhu X L, Cai X, Zhao Y T, Mao L J, Yang J C, Zhou X H, Xu H S, Yuan Y J, Xia J W, Zhao H W, Xiao G Q, Zhan W L 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 169
[64] Krantz C, Orlov D A, Bernhardt D, Brandau C, Hoffmann J, Müller A, Ricsoka T, Ricz S, Schippers S, Wolf A 2009 Journal of Physics: Conference Series 163 012059
[65] Trabert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2002 Phys. Rev. A 66 052507
[66] Träbert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2003 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 205 83
[67] Träbert E, Gwinner G, Wolf A, Tordoir X, Calamai A G 1999 Phys. Lett. A 264 311
[68] Liu X, Zhou Xiao Peng, Qiang W W, Feng L Q, Cheng-Long Y, Guo-Qin X, Jun X, Zhong-Kui H, Han-Bing W, Dong-Yang C, Lin S, Yang Y, Shu-Xing W, Wan-Lu M, Xin-Wen M 2022 Acta Phys. Sin. 71 033201
[69] Beiersdorfer P, Cauble R, Chantrenne S, Chen M, Knapp D, Marrs R, Phillips T, Reed K, Schneider M, Scofield J, Wong K, Vogel D, Zasadzinski R, Wargelin B, Bitter M, Goeler S v 1991 Electron-Ion Interaction Cross Sections Determined by X-ray Spectroscopy on EBIT
[70] Silver E, Schnopper H, Bandler S, Brickhouse N, Murray S, Barbera M, Takacs E, Gillaspy J D, Porto J V, Kink I 2000 Astrophys. J. 541 495
[71] Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Phys. Rev. A 100 052508
[72] Lu D, Yang Y, Xiao J, Shen Y, Fu Y, Wei B, Yao K, Hutton R, Zou Y 2014 Rev. Sci. Instrum. 85 093301
[73] Xiao J, Fei Z, Yang Y, Jin X, Lu D, Shen Y, Liljeby L, Hutton R, Zou Y 2012 Rev. Sci. Instrum. 83 013303
[74] Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 in Proceedings of the 4th International Particle Accelerator Conference, IPAC2013 (JACoW, Shanghai, China, 2013), pp. 434–436.
[75] Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y, Gao K L 2021 Phys. Rev. A 103 022804
[76] Shaolong Chen, Zhiqiang Zhou, Jiguang Li, Tingxian Zhang, Chengbin Li, Tingyun Shi, Yao Huang, Kelin Gao, Guan H 2024 Phys. Rev. Research 6 013030
[77] Liang S, Lu Q, Wang X, Yang Y, Yao K, Shen Y, Wei B, Xiao J, Chen S, Zhou P, Sun W, Zhang Y, Huang Y, Guan H, Tong X, Li C, Zou Y, Shi T, Gao K 2019 Rev. Sci. Instrum. 90 093301
[78] Zhu X L, Ma X, Li J Y, Schmidt M, Feng W T, Peng H, Xu J W, Zschornack G, Liu H P, Zhang T M, Zhao D M, Guo D L, Huang Z K, Zhou X M, Gao Y, Cheng R, Wang H B, Yang J, Kang L 2019 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 460 224
[79] Morton A L, Marrs R E, Henderson J R, Knapp D A, Marilyn B S 1988 Phys. Scr. 1988 157
[80] Beiersdorfer P, Britten J A, Brown G V, Chen H, Clothiaux E J, Cottam J, Förster E, Gu M F, Harris C L, Kahn S M, Lepson J K, Neill P A, Savin D W, Schulte-Schrepping H, Schweikhard L, Smith A J, Träbert E, Tschischgale J, Utter S B, Wong K L 2001 Phys. Scr. 2001 268
[81] Morgan C A, Serpa F G, Takács E, Meyer E S, Gillaspy J D, Sugar J, Roberts J R, Brown C M, Feldman U 1995 Phys. Rev. Lett. 74 1716
[82] Silver J D, Varney A J, Margolis H S, Baird P E G, Grant I P, Groves P D, Hallett W A, Handford A T, Hirst P J, Holmes A R, Howie D J H, Hunt R A, Nobbs K A, Roberts M, Studholme W, Wark J S, Williams M T, Levine M A, Dietrich D D, Graham W G, Williams I D, O’Neil R, Rose S J 1994 Rev. Sci. Instrum. 65 1072
[83] Christoph B, Andreas F, Gerd F, Rainer R 1997 Phys. Scr. 1997 360
[84] Currell F J, Asada J, Ishii K, Minoh A, Motohashi K, Nakamura N, Nishizawa K, Ohtani S, Okazaki K, Sakurai M, Shiraishi H, Tsurubuchi S, Watanabe H 1996 J. Phys. Soc. Jpn. 65 3186
[85] López-Urrutia J R C, Dorn A, Moshammer R, Ullrich J 1999 Phys. Scr. 1999 502
[86] Mianhong H, Yong L, Yang Y, Shimin W, Weidong C, Wei H, Panlin G, Di L, Yunqing F, Min H, Xuemei Z, Roger H, Leif L, Yaming Z 2007 Journal of Physics: Conference Series 58 419
[87] Schuch R, Tashenov S, Orban I, Hobein M, Mahmood S, Kamalou O, Akram N, Safdar A, Skog P, Solders A, Zhang H 2010 Journal of Instrumentation 5 C12018
[88] Dilling J, Baartman R, Bricault P, Brodeur M, Blomeley L, Buchinger F, Crawford J, Crespo López-Urrutia J R, Delheij P, Froese M, Gwinner G P, Ke Z, Lee J K P, Moore R B, Ryjkov V, Sikler G, Smith M, Ullrich J, Vaz J 2006 Int. J. Mass Spectrom. 251 198
[89] Nakamura N, Kikuchi H, Sakaue H A, Watanabe T 2008 Rev. Sci. Instrum. 79 063104
[90] Micke P, Kühn S, Buchauer L, Harries J R, Bücking T M, Blaum K, Cieluch A, Egl A, D. Hollain, Kraemer S, Pfeifer T, Schmidt P O, Schüssler R X, Schweiger C, Stöhlker T, Sturm S, Wolf R N, Bernitt S, López-Urrutia J R C 2018 Rev. Sci. Instrum. 89 063109
[91] Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506
[92] Lapierre A, López-Urrutia J R C, Braun J, Brenner G, Bruhns H, Fischer D, Martínez A J G, V. Mironov C O, Sikler G, Orts R S, Tawara H, Ullrich J, V. M. Shabaev, Tupitsyn I I, Volotka A 2006 Phys. Rev. A 73 052507
[93] Mäckel V 2010 (der Ruprecht-Karls-Universität Heidelberg)
[94] Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Pedregosa-Gutierrez J, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O, López-Urrutia J R C 2015 Science 347 1233
[95] Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749
[96] Zubova N A, Malyshev A V, Tupitsyn I I, Shabaev V M, Kozhedub Y S, Plunien G, Brandau C, Stöhlker T 2016 Phys. Rev. A 93 052502
[97] Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211
计量
- 文章访问数: 67
- PDF下载量: 6
- 被引次数: 0