搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高电荷态类硼离子2P3/2-2P1/2跃迁的实验和理论研究进展

刘鑫 汶伟强 李冀光 魏宝仁 肖君

引用本文:
Citation:

高电荷态类硼离子2P3/2-2P1/2跃迁的实验和理论研究进展

刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君

Precision Spectroscopy of the 2P1/2-2P3/2 Transition in Boron-like Highly Charged Ions: Experiment and Theory

Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun
PDF
导出引用
  • 高电荷态离子(highly charged ion,HCI)的精细结构及辐射跃迁性质的精确测量不仅可以检验基本物理模型,包括:强场量子电动力学(quantum electrodynamics,QED)效应、电子关联效应、相对论效应、原子核效应等,而且能够为天体物理和聚变等离子体物理提供关键原子物理参数。相对于研究较多的类氢和类锂离子体系,类硼离子的精细结构禁戒跃迁的相对论效应和QED效应的贡献很大,高精度实验测量与理论计算为进一步检验多电子体系的基本物理模型提供了重要途径。此外,类硼离子也被认为是最佳的高电荷态离子光钟候选体系。本文主要介绍了类硼离子基态2P3/2-2P1/2跃迁的实验和理论研究最新进展,概述了其精细结构和超精细结构的研究现状,并讨论了使用电子束离子阱结合高分辨光谱学实验技术开展类硼离子超精细分裂实验测量的方案,为未来开展类硼离子超精细分裂实验研究并在更高精度上检验QED效应,提取原子核磁化分布半径,检验相关的核结构模型等研究提供了参考。
    The precise measurement of the fine structure and radiative transition properties of highly charged ions (HCI) is essential for testing fundamental physical models, including strong-field quantum electrodynamics (QED) effects, electron correlation effects, relativistic effects, and nuclear effects. These measurements also provide critical atomic physics parameters for astrophysics and fusion plasma physics. Compared to the extensively studied hydrogen-like and lithium-like ion systems, boron-like ions exhibit significant contributions from relativistic and QED effects in their fine structure forbidden transitions. High-precision experimental measurements and theoretical calculations of these systems offer important avenues for further testing fundamental physical models in multi-electron systems. Additionally, boron-like ions are considered promising candidates for HCI optical clocks. This paper presents the latest advancements in experimental and theoretical research on the ground state 2P3/2-2P1/2 transition in boron-like ions, summarizing the current understanding of their fine and hyperfine structures. It also discusses a proposed experimental setup for measuring the hyperfine splitting of boron-like ions using an electron beam ion trap combined with high-resolution spectroscopy. This proposal aims to provide a reference for future experimental research on the hyperfine splitting of boron-like ions, with the goal of testing QED effects at higher precision, extracting nuclear magnetization distribution radii, and validating relevant nuclear structure models.
  • [1]

    Beyer H F, Shevelko V P 2003 Introduction to the Physics of Highly Charged Ions (Institute of Physics Publishing, wholly owned by The Institute of Physics, London: IOP Publishing Ltd)

    [2]

    Indelicato P 2019 J. Phys. B: At., Mol. Opt. Phys. 52 232001

    [3]

    Nörtershäuser W 2011 Hyperfine Interact. 199 131

    [4]

    Fawcett B C, Gabriel A H, Paget T M 1971 J. Phys. B: At., Mol. Opt. Phys. 4 986

    [5]

    Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 Astron. Astrophys. 365 L329

    [6]

    Edlén B 1983 Phys. Scr. 28 483

    [7]

    Flower D, Nussbaumer H 1975 Astron. Astrophys. 45 349

    [8]

    Sugar J, Kaufman V, Cooper D 1982 Phys. Scr. 26 293

    [9]

    Wang W, Liu X-W, Zhang Y, Barlow M 2004 Astron. Astrophys. 427 873

    [10]

    Stencel R E, Linsky J L, Brown A, Jordan C, Carpenter K G, Wing R F, Czyzak S 1981 Mon. Not. R. Astron. Soc. 196 47P

    [11]

    Brekke P, Kjeldseth-Moe O, Bartoe J-D F, Brueckner G E 1991 Astrophysical Journal Supplement 75 1337

    [12]

    King S A, Spieß L J, Micke P, Wilzewski A, Leopold T, Benkler E, Lange R, Huntemann N, Surzhykov A, Yerokhin V A, López-Urrutia J R C, Schmidt P O 2022 Nature 611 43

    [13]

    Kozlov M G, Safronova M S, López-Urrutia J R C, Schmidt P O 2018 Review of Modern Physics 90 045005

    [14]

    Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A, Clark C W 2018 Review of Modern Physics 90 025008

    [15]

    Edlén B 1943 Z. Astrophys. 22 30

    [16]

    Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64

    [17]

    Draganič I, López-Urrutia J R C, DuBois R, Fritzsche S, Shabaev V M, Orts R S, Tupitsyn I I, Zou Y, Ullrich J 2003 Phys. Rev. Lett. 91 183001

    [18]

    Orts R S, Harman Z, Crespo López-Urrutia J R, Artemyev A N, Bruhns H, Martínez A J G, Jentschura U D, Keitel C H, Lapierre A, Mironov V, Shabaev V M, Tawara H, Tupitsyn I I, Ullrich J, Volotka A V 2006 Phys. Rev. Lett. 97 103002

    [19]

    Mackel V, Klawitter R, Brenner G, López-Urrutia J R C, Ullrich J 2011 Phys. Rev. A 107 143002

    [20]

    Micke P, Leopold T, King S A, Benkler E, Spieß L J, Schmöger L, Schwarz M, Crespo López-Urrutia J R, Schmidt P O 2020 Nature 578 60

    [21]

    Klaft I, Borneis S, Engel T, Fricke B, Grieser R, Huber G, Kühl T, Marx D, Neumann R, Schröder S, Seelig P, Völker L 1994 Phys. Rev. Lett. 73 2425

    [22]

    Lochmann M, Jöhren R, Geppert C, Andelkovic Z, Anielski D, Botermann B, Bussmann M, Dax A, Frömmgen N, Hammen M, Hannen V, Kühl T, Litvinov Y A, López-Coto R, Stöhlker T, Thompson R C, Vollbrecht J, Volotka A, Weinheimer C, Wen W, Will E, Danyal Winters, Sánchez R, Nörtershäuser W 2014 Phys. Rev. A 90 030501(R)

    [23]

    Ullmann J, Andelkovic Z, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y, Lochmann M, Maass B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Vollbrecht J, Weinheimer C, Nörtershäuser W 2015 J. Phys. B: At., Mol. Opt. Phys. 48 144022

    [24]

    Ullmann J, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Trageser C, Vollbrecht o, Weinheimer C, Nörtershäuser W 2017 Nat. Commun. 8 15484

    [25]

    Crespo López-Urrutia J R, Beiersdorfer P, Savin D W, Widmann K 1996 Phys. Rev. Lett. 77 826

    [26]

    Crespo López-Urrutia J R, Beiersdorfer P, Widmann K, Birkett B B, Mårtensson-Pendrill A-M, Gustavsson M G H 1998 Phys. Rev. A 57 879

    [27]

    Seelig P, Borneis S, Dax A, Engel T, Faber S, Gerlach M, Holbrow C, Huber G, Kühl T, Marx D, Meier K, Merz P, Quint W, Schmitt F, Tomaselli M, Völker L, Winter H, Würtz M, Beckert K, Franzke B, Nolden F, Reich H, Steck M, Winkler T 1998 Phys. Rev. Lett. 81 4824

    [28]

    Beiersdorfer P, Utter S B, Wong K L, López-Urrutia J R C, Britten J A, Chen H, Harris C L, Thoe R S, Thorn D B, Träbert E, Gustavsson M G H, Forssén C, Mårtensson-Pendrill A-M 2001 Phys. Rev. A 64 032506

    [29]

    Beiersdorfer P, Osterheld A L, Scofield J H, J. R. Crespo López-Urrutia, Widmann K 1998 Phys. Rev. Lett. 80 3022

    [30]

    Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A, Wolf A 2008 Phys. Rev. Lett. 100 033001

    [31]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003

    [32]

    Shabaev V M, Shabaeva M B, Tupitsyn I I 1995 Phys. Rev. A 52 3686

    [33]

    Shabaev V M, Artemyev A N, Yerokhin V A, Zherebtsov O M, Soff G 2001 Phys. Rev. Lett. 86 3959

    [34]

    Volotka A V, Glazov D A, Andreev O V, Shabaev V M, Tupitsyn I I, Plunien G 2012 Phys. Rev. Lett. 108 073001

    [35]

    Karr J P 2017 Nat. Phys. 13 533

    [36]

    Nörtershäuser W, Ullmann J, Skripnikov L V, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Kraus F, Kresse B, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Privalov A F, Sánchez R, Scheibe B, Schmidt M, Schmidt S, Shabaev V M, Steck M, Stöhlker T, Thompson R C, Trageser C, Vogel M, Vollbrecht J, Volotka A V, Weinheimer C 2019 Hyperfine Interact. 240

    [37]

    Skripnikov L V, Schmidt S, Ullmann J, Geppert C, Kraus F, Kresse B, Nörtershäuser W, Privalov A F, Scheibe B, Shabaev V M, Vogel M, Volotka A V 2018 Phys. Rev. Lett. 120 093001

    [38]

    Volotka A V, Glazov D A, Tupitsyn I I, Oreshkina N S, Plunien G, Shabaev V M 2008 Phys. Rev. A 78 062507

    [39]

    Glazov D A, Volotka A V, Andreev O V, Kosheleva V P, Fritzsche S, Shabaev V M, Plunien G, Stöhlker T 2019 Phys. Rev. A 99 062503

    [40]

    Verdebout S, Nazé C, Jönsson P, Rynkun P, Godefroid M, Gaigalas G 2014 At. Data Nucl. Data Tables 100 1111

    [41]

    Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111

    [42]

    Verhey T R, Das B P, Perger W F 1987 Journal of Physics B: Atomic Molecular Optical Physics 20 3639

    [43]

    Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850

    [44]

    Charro E, López-Ferrero S, Martín I 2001 Journal of Physics B: Atomic Molecular Optical Physics 34 4243

    [45]

    Tupitsyn I I, Volotka A V, Glazov D A, Shabaev V M, Plunien G, Crespo López-Urrutia J R, Lapierre A, Ullrich J 2005 Phys. Rev. A 72 062503

    [46]

    Koc K 2005 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 235 46

    [47]

    Volotka A, Glazov D, Plunien G, Shabaev V, Tupitsyn I 2006 Eur. Phys. J. D 38 293

    [48]

    Koc K 2009 Eur. Phys. J. D 53 9

    [49]

    Rynkun P, Jönsson P, Gaigalas G, Fischer C F 2012 At. Data Nucl. Data Tables 98 481

    [50]

    Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518

    [51]

    Fischer C F, Grant I P, Gaigalas G, Rynkun P 2016 Phys. Rev. A 93 022505

    [52]

    Malyshev A V, Glazov D A, Volotka A V, Tupitsyn I I, Shabaev V M, Plunien G, Stöhlker T 2017 Phys. Rev. A 96 022512

    [53]

    Bilal M, Volotka A V, Beerwerth R, Fritzsche S 2018 Phys. Rev. A 97 052506

    [54]

    Natarajan L 2021 Phys. Scr. 96 105402

    [55]

    Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu G Q, Xiao J, Volotka A V, Kozhedub Y S, Kaygorodov M Y, Huang Z K, Ma W L, Wang S X, Ma X 2021 Phys. Rev. A 104 062804

    [56]

    Hinnov E, Suckewer S, Cohen S, Sato K 1982 Phys. Rev. A 25 2293

    [57]

    Shabaev V M 1994 J. Phys. B: At., Mol. Opt. Phys. 27 5825

    [58]

    Brandau C, Kozhuharov C, Muller A, Shi W, Schippers S, Bartsch T, Bohm S, Bohme C, Hoffknecht A, Knopp H, Grun N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stohlker T, Stachura Z 2003 Phys. Rev. Lett. 91 073202

    [59]

    Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G, Schuch R 2000 Phys. Rev. Lett. 86 5027

    [60]

    Wang S X, Huang Z K, Wen W Q, Ma W L, Wang H B, Schippers S, Wu Z W, Kozhedub Y S, Kaygorodov M Y, Volotka A V, Wang K, Zhang C Y, Chen C Y, Liu C, Huang H K, Shao L, Mao L J, Ma X M, Li J, Tang M T, Yan K M, Zhou Y B, Yuan Y J, Yang J C, Zhang S F, Ma X, Zhu L F 2022 Phys. Rev. A 106 042808

    [61]

    Brandau C, Kozhuharov C (Shevelko V, Tawara H ed) 2012 Atomic Processes in Basic and Applied Physics (Berlin, Heidelberg: Springer Berlin Heidelberg) pp283-306

    [62]

    Huang Z K, Wen W Q, X. Xu c H B W, Dou L J, Chuai X Y, Zhu X L, Zhao D M, Li J, Ma X M, Mao L J, Yang J C, Yuan Y J, Xu W Q, Xie L Y, Xu T H, Yao K, Dong C Z, Zhu L F, Ma X 2017 Nucl. Instr. Meth. A 408 135

    [63]

    Ma X, Wen W Q, Zhang S F, Yu D Y, Cheng R, Yang J, Huang Z K, Wang H B, Zhu X L, Cai X, Zhao Y T, Mao L J, Yang J C, Zhou X H, Xu H S, Yuan Y J, Xia J W, Zhao H W, Xiao G Q, Zhan W L 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 169

    [64]

    Krantz C, Orlov D A, Bernhardt D, Brandau C, Hoffmann J, Müller A, Ricsoka T, Ricz S, Schippers S, Wolf A 2009 Journal of Physics: Conference Series 163 012059

    [65]

    Trabert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2002 Phys. Rev. A 66 052507

    [66]

    Träbert E, Beiersdorfer P, Gwinner G, Pinnington E H, Wolf A 2003 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 205 83

    [67]

    Träbert E, Gwinner G, Wolf A, Tordoir X, Calamai A G 1999 Phys. Lett. A 264 311

    [68]

    Liu X, Zhou Xiao Peng, Qiang W W, Feng L Q, Cheng-Long Y, Guo-Qin X, Jun X, Zhong-Kui H, Han-Bing W, Dong-Yang C, Lin S, Yang Y, Shu-Xing W, Wan-Lu M, Xin-Wen M 2022 Acta Phys. Sin. 71 033201

    [69]

    Beiersdorfer P, Cauble R, Chantrenne S, Chen M, Knapp D, Marrs R, Phillips T, Reed K, Schneider M, Scofield J, Wong K, Vogel D, Zasadzinski R, Wargelin B, Bitter M, Goeler S v 1991 Electron-Ion Interaction Cross Sections Determined by X-ray Spectroscopy on EBIT

    [70]

    Silver E, Schnopper H, Bandler S, Brickhouse N, Murray S, Barbera M, Takacs E, Gillaspy J D, Porto J V, Kink I 2000 Astrophys. J. 541 495

    [71]

    Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Phys. Rev. A 100 052508

    [72]

    Lu D, Yang Y, Xiao J, Shen Y, Fu Y, Wei B, Yao K, Hutton R, Zou Y 2014 Rev. Sci. Instrum. 85 093301

    [73]

    Xiao J, Fei Z, Yang Y, Jin X, Lu D, Shen Y, Liljeby L, Hutton R, Zou Y 2012 Rev. Sci. Instrum. 83 013303

    [74]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 in Proceedings of the 4th International Particle Accelerator Conference, IPAC2013 (JACoW, Shanghai, China, 2013), pp. 434–436.

    [75]

    Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y, Gao K L 2021 Phys. Rev. A 103 022804

    [76]

    Shaolong Chen, Zhiqiang Zhou, Jiguang Li, Tingxian Zhang, Chengbin Li, Tingyun Shi, Yao Huang, Kelin Gao, Guan H 2024 Phys. Rev. Research 6 013030

    [77]

    Liang S, Lu Q, Wang X, Yang Y, Yao K, Shen Y, Wei B, Xiao J, Chen S, Zhou P, Sun W, Zhang Y, Huang Y, Guan H, Tong X, Li C, Zou Y, Shi T, Gao K 2019 Rev. Sci. Instrum. 90 093301

    [78]

    Zhu X L, Ma X, Li J Y, Schmidt M, Feng W T, Peng H, Xu J W, Zschornack G, Liu H P, Zhang T M, Zhao D M, Guo D L, Huang Z K, Zhou X M, Gao Y, Cheng R, Wang H B, Yang J, Kang L 2019 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 460 224

    [79]

    Morton A L, Marrs R E, Henderson J R, Knapp D A, Marilyn B S 1988 Phys. Scr. 1988 157

    [80]

    Beiersdorfer P, Britten J A, Brown G V, Chen H, Clothiaux E J, Cottam J, Förster E, Gu M F, Harris C L, Kahn S M, Lepson J K, Neill P A, Savin D W, Schulte-Schrepping H, Schweikhard L, Smith A J, Träbert E, Tschischgale J, Utter S B, Wong K L 2001 Phys. Scr. 2001 268

    [81]

    Morgan C A, Serpa F G, Takács E, Meyer E S, Gillaspy J D, Sugar J, Roberts J R, Brown C M, Feldman U 1995 Phys. Rev. Lett. 74 1716

    [82]

    Silver J D, Varney A J, Margolis H S, Baird P E G, Grant I P, Groves P D, Hallett W A, Handford A T, Hirst P J, Holmes A R, Howie D J H, Hunt R A, Nobbs K A, Roberts M, Studholme W, Wark J S, Williams M T, Levine M A, Dietrich D D, Graham W G, Williams I D, O’Neil R, Rose S J 1994 Rev. Sci. Instrum. 65 1072

    [83]

    Christoph B, Andreas F, Gerd F, Rainer R 1997 Phys. Scr. 1997 360

    [84]

    Currell F J, Asada J, Ishii K, Minoh A, Motohashi K, Nakamura N, Nishizawa K, Ohtani S, Okazaki K, Sakurai M, Shiraishi H, Tsurubuchi S, Watanabe H 1996 J. Phys. Soc. Jpn. 65 3186

    [85]

    López-Urrutia J R C, Dorn A, Moshammer R, Ullrich J 1999 Phys. Scr. 1999 502

    [86]

    Mianhong H, Yong L, Yang Y, Shimin W, Weidong C, Wei H, Panlin G, Di L, Yunqing F, Min H, Xuemei Z, Roger H, Leif L, Yaming Z 2007 Journal of Physics: Conference Series 58 419

    [87]

    Schuch R, Tashenov S, Orban I, Hobein M, Mahmood S, Kamalou O, Akram N, Safdar A, Skog P, Solders A, Zhang H 2010 Journal of Instrumentation 5 C12018

    [88]

    Dilling J, Baartman R, Bricault P, Brodeur M, Blomeley L, Buchinger F, Crawford J, Crespo López-Urrutia J R, Delheij P, Froese M, Gwinner G P, Ke Z, Lee J K P, Moore R B, Ryjkov V, Sikler G, Smith M, Ullrich J, Vaz J 2006 Int. J. Mass Spectrom. 251 198

    [89]

    Nakamura N, Kikuchi H, Sakaue H A, Watanabe T 2008 Rev. Sci. Instrum. 79 063104

    [90]

    Micke P, Kühn S, Buchauer L, Harries J R, Bücking T M, Blaum K, Cieluch A, Egl A, D. Hollain, Kraemer S, Pfeifer T, Schmidt P O, Schüssler R X, Schweiger C, Stöhlker T, Sturm S, Wolf R N, Bernitt S, López-Urrutia J R C 2018 Rev. Sci. Instrum. 89 063109

    [91]

    Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506

    [92]

    Lapierre A, López-Urrutia J R C, Braun J, Brenner G, Bruhns H, Fischer D, Martínez A J G, V. Mironov C O, Sikler G, Orts R S, Tawara H, Ullrich J, V. M. Shabaev, Tupitsyn I I, Volotka A 2006 Phys. Rev. A 73 052507

    [93]

    Mäckel V 2010 (der Ruprecht-Karls-Universität Heidelberg)

    [94]

    Schmöger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Pedregosa-Gutierrez J, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O, López-Urrutia J R C 2015 Science 347 1233

    [95]

    Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C, Wineland D J 2005 Science 309 749

    [96]

    Zubova N A, Malyshev A V, Tupitsyn I I, Shabaev V M, Kozhedub Y S, Plunien G, Brandau C, Stöhlker T 2016 Phys. Rev. A 93 052502

    [97]

    Li W, Grumer J, Brage T, Jönsson P 2020 Comput. Phys. Commun. 253 107211

  • [1] 管桦, 戚晓秋, 陈邵龙, 史庭云, 高克林. 锂离子精密光谱与核结构信息.  , doi: 10.7498/aps.73.20241128
    [2] 王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰. 极化效应对Bohr速度能区O5+离子在低密度氢等离子体中的能损影响.  , doi: 10.7498/aps.72.20221875
    [3] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置.  , doi: 10.7498/aps.72.20230214
    [4] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望.  , doi: 10.7498/aps.72.20230986
    [5] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量.  , doi: 10.7498/aps.71.20211663
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量.  , doi: 10.7498/aps.70.20211663
    [7] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线.  , doi: 10.7498/aps.70.20210757
    [8] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究.  , doi: 10.7498/aps.68.20182136
    [9] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量.  , doi: 10.7498/aps.66.193701
    [10] 任雅娜, 杨保东, 王杰, 杨光, 王军民. 铯原子7S1/2态磁偶极超精细常数的测量.  , doi: 10.7498/aps.65.073103
    [11] 杨兆锐, 张小安, 徐秋梅, 杨治虎. 高电荷态Krq+与Al表面碰撞发射可见光的研究.  , doi: 10.7498/aps.62.043401
    [12] 王兴, 赵永涛, 程锐, 周贤明, 徐戈, 孙渊博, 雷瑜, 王瑜玉, 任洁茹, 虞洋, 李永峰, 张小安, 李耀宗, 梁昌慧, 肖国青. 重离子轰击Ta靶引起的多电离效应.  , doi: 10.7498/aps.61.193201
    [13] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究.  , doi: 10.7498/aps.58.5578
    [14] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响.  , doi: 10.7498/aps.58.3833
    [15] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究.  , doi: 10.7498/aps.57.2161
    [16] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响.  , doi: 10.7498/aps.57.137
    [17] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额.  , doi: 10.7498/aps.56.5734
    [18] 王瑜玉, 赵永涛, 肖国青, 房 燕, 张小安, 王铁山, 王释伟, 彭海波. 高电荷态离子207Pbq+(24≤q≤36)与Si(110)固体表面作用的电子发射研究.  , doi: 10.7498/aps.55.673
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线.  , doi: 10.7498/aps.55.2221
    [20] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应.  , doi: 10.7498/aps.52.813
计量
  • 文章访问数:  67
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-19

/

返回文章
返回
Baidu
map