-
Silicon dioxide (SiO2) is an important component of nuclear reactor optical fiber and is also a candidate material for wast solidification. Owing to its special physical and chemical characteristics, it is used in many different technology fields like optics, electronics, energy orspace. Swift heavy ion irradiation can modify the crystal structure and optical property of optical material SiO2. Swift heavy ions deposit their energy mainly by inelastic interaction. Highly ionized lattice atoms may be formed along the trajectory, and a fraction of their electrical energy can be converted directly into the kinetic energy of the ions. The irradiation experiment is performed with Xeq+ ions at the irradiation terminal of the sector-focused cyclotron at heavy-ion research facility in Lanzhou (HIRFL). The on-line spectral measurement experiment is carried out during irradiation. In the darkroom, the UV-visible light emission from the target is focused into optical fiber by a collimating lens, and then is analyzed with the Sp-2558 spectrometer equipped with a 1200 g/mm optical grating blazed at 500 nm. In the present work, SiO2 single crystals are irradiated with 93–609 MeV Xeq+ ions with a dose in a range of 1×1011–3×1011 ions/cm2. During irradiation, the emission spectra, in a range of 200–800 nm, from SiO2 irradiated by 93, 245, 425 and 609 MeV Xeq+ ions, are obtained. Two emission bands centered at 461 and 631 nm are observed. These emission bands are produced by Frenkel exciton radiation de-excitation and their intensities are closely related to the irradiated ion energy and radiation dose. The results show that the light intensity increases with the electron energy loss index increasing. And owing to crystal damage caused by ion irradiation, the intensity of emission spectrum decreases with the augment of irradiation dose. Ion loses its energy throughout the ion track via Sn and Se interacting with target atoms and electrons respectively, and the energy lost by the ion is estimated by using SRIM code. The SRIM simulated ion ranges and recoil atom distribution, target ionization (energy loss to target electrons), damage production in SiO2 are presented. Based on the energy deposition process, the emission bands related to the crystal structure itself are discussed. It indicates that electron energy loss plays a leading role in the process of light emission. In-situ measurement of the optical emission is of great significance in studying the irradiation modification and can help to understand the process of crystal damage caused by ion irradiation.
-
Keywords:
- optical emission band /
- swift heavy ions /
- the electron energy loss /
- silicon dioxide
[1] Yang P, An YL, Yang D Y, Li Y H, Chen J M 2020 Ceram. Int. 46 21367Google Scholar
[2] Li Y H, Wen J, Wang Y Q, Wang Z G, Tang M, Valdez J A, Sickafus K E 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 287 130Google Scholar
[3] Devine R A B 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 378Google Scholar
[4] Zhu Z, Jung P, Langenscheidt E 1997 J. Non-Cryst. Solids 217 173Google Scholar
[5] Zhu Z Y, Jung P 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 269Google Scholar
[6] Saito K, Ikushima A J 2002 J. Appl. Phys. 91 4886Google Scholar
[7] Wang R P, Tai N, Saitio K, Ikushima A J 2005 J. Appl. Phys. 98 023701Google Scholar
[8] Xue S W, Zu X T, Su H Q, Zheng W G, Xia X, Hong D, Yang C R 2007 Chin. Phys. 16 1119Google Scholar
[9] Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 38 12772Google Scholar
[10] Nishikawa H, Nakamura R, Tohmon R, Ohki Y, Sakurai Y, Nagasawa K, Hama Y 1990 Phys. Rev. B 41 7828Google Scholar
[11] Ziegler J F 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 219 1027
[12] Bettger K (姜东兴, 刘洪涛 译) 1982 重离子物理实验方法 (北京: 原子能出版社) 第149页
Bettger K (translated by Jiang Dongxing, Liu Hongtao) 1982 Experimental Methods in Heavy Ion Physics (Beijing: Atomic Energy Press) p149 (in Chinese)
[13] Stevens-Kalceff M A 2011 J. Phys. D: Appl. Phys. 44 255402Google Scholar
[14] Kaddouri A, Ashraf I, El Fqih M A, Targaoui H, El Boujlaïdi A, Berrada K 2009 Appl. Surf. Sci. 256 116Google Scholar
[15] Song Y, Zhang C H, Yang Y T, Gou J, Zhang L Q, He D Y 2013 Opt. Mater. 35 1057Google Scholar
[16] Patra P, Shah S, Toulemonde M, Sulania I, Singh F 2022 Radiat. Eff. Defects Solids 177 513Google Scholar
[17] Meftah A, Brisard F, Costantini J M, Dooryhee E, Hage-Ali M, Hervieu M, Stoquert J P, Studer F, Toulemonde M 1994 Phys. Rev. B 49 12457Google Scholar
[18] Kluth P, Schnohr C S, Pakarinen O H, Djurabekova F, Sprouster D J, Giulian R, Ridgway M C, Byrne A P, Trautmann C, Cookson D J, Nordlund K, Toulemonde M 2008 Phys. Rev. Lett. 101 175503Google Scholar
[19] Toulemonde M, Weber W J, Li G S, Shutthanandan V, Kluth P, Yang T F, Wang Y G, Zhang Y W 2011 Phys. Rev. B 83 054106Google Scholar
[20] Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104Google Scholar
[21] Liu C B, Wang Z G 2011 Chin. J. Lumin. 32 608Google Scholar
[22] Udelson B J, Creedon J E, French J C 1957 J. Appl. Phys. 28 717Google Scholar
[23] Liao L S, Bao X M, Zheng X Q, Li N S, Min N B 1996 Chin. J. Semicond. 17 789
-
表 1 不同能量Xeq+离子辐照SiO2植入深度、电子能损和核能损
Table 1. the penetrating depth and, its electronic energy loss and nuclear energy loss of Xeq+ ion in SiO2.
Ion energy
/MeVProjected
range/μmElectronic energy
loss/(×104 keV·μm–1)Nuclear energy loss
/(×10 keV·μm–1)609 60.69 1.258 1.518 425 46.14 1.260 2.063 245 31.59 1.183 3.283 93 17.54 0.9225 7.271 -
[1] Yang P, An YL, Yang D Y, Li Y H, Chen J M 2020 Ceram. Int. 46 21367Google Scholar
[2] Li Y H, Wen J, Wang Y Q, Wang Z G, Tang M, Valdez J A, Sickafus K E 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 287 130Google Scholar
[3] Devine R A B 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 378Google Scholar
[4] Zhu Z, Jung P, Langenscheidt E 1997 J. Non-Cryst. Solids 217 173Google Scholar
[5] Zhu Z Y, Jung P 1994 Nucl. Instrum. Methods Phys. Res. , Sect. B 91 269Google Scholar
[6] Saito K, Ikushima A J 2002 J. Appl. Phys. 91 4886Google Scholar
[7] Wang R P, Tai N, Saitio K, Ikushima A J 2005 J. Appl. Phys. 98 023701Google Scholar
[8] Xue S W, Zu X T, Su H Q, Zheng W G, Xia X, Hong D, Yang C R 2007 Chin. Phys. 16 1119Google Scholar
[9] Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 38 12772Google Scholar
[10] Nishikawa H, Nakamura R, Tohmon R, Ohki Y, Sakurai Y, Nagasawa K, Hama Y 1990 Phys. Rev. B 41 7828Google Scholar
[11] Ziegler J F 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 219 1027
[12] Bettger K (姜东兴, 刘洪涛 译) 1982 重离子物理实验方法 (北京: 原子能出版社) 第149页
Bettger K (translated by Jiang Dongxing, Liu Hongtao) 1982 Experimental Methods in Heavy Ion Physics (Beijing: Atomic Energy Press) p149 (in Chinese)
[13] Stevens-Kalceff M A 2011 J. Phys. D: Appl. Phys. 44 255402Google Scholar
[14] Kaddouri A, Ashraf I, El Fqih M A, Targaoui H, El Boujlaïdi A, Berrada K 2009 Appl. Surf. Sci. 256 116Google Scholar
[15] Song Y, Zhang C H, Yang Y T, Gou J, Zhang L Q, He D Y 2013 Opt. Mater. 35 1057Google Scholar
[16] Patra P, Shah S, Toulemonde M, Sulania I, Singh F 2022 Radiat. Eff. Defects Solids 177 513Google Scholar
[17] Meftah A, Brisard F, Costantini J M, Dooryhee E, Hage-Ali M, Hervieu M, Stoquert J P, Studer F, Toulemonde M 1994 Phys. Rev. B 49 12457Google Scholar
[18] Kluth P, Schnohr C S, Pakarinen O H, Djurabekova F, Sprouster D J, Giulian R, Ridgway M C, Byrne A P, Trautmann C, Cookson D J, Nordlund K, Toulemonde M 2008 Phys. Rev. Lett. 101 175503Google Scholar
[19] Toulemonde M, Weber W J, Li G S, Shutthanandan V, Kluth P, Yang T F, Wang Y G, Zhang Y W 2011 Phys. Rev. B 83 054106Google Scholar
[20] Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104Google Scholar
[21] Liu C B, Wang Z G 2011 Chin. J. Lumin. 32 608Google Scholar
[22] Udelson B J, Creedon J E, French J C 1957 J. Appl. Phys. 28 717Google Scholar
[23] Liao L S, Bao X M, Zheng X Q, Li N S, Min N B 1996 Chin. J. Semicond. 17 789
Catalog
Metrics
- Abstract views: 3928
- PDF Downloads: 54
- Cited By: 0