Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of Gaussian boson sampling under phase noise of the light source

Qin Jian

Citation:

Investigation of Gaussian boson sampling under phase noise of the light source

Qin Jian
PDF
HTML
Get Citation
  • Gaussian boson sampling is one of the main promising approaches to realizing the quantum computational advantage, which also offers potential applications such as in dense subgraphs problem and quantum chemistry. However, the inevitable noise in experiment may weaken the quantum advantage of Gaussian boson sampling. Photon loss and photon partial indistinguishability are two major sources of noise. Their influence on the complexity of Gaussian boson sampling has been extensively studied in previous work. However, the phase noise of the input light source, a noise which is suitable for tailored for Gaussian boson sampling, has not been studied so far. Here, we investigate the phase noise of the input light source in Gaussian boson sampling through numerical simulation. We use the Monte Carlo method to calculate the output probability distribution under phase noise approximately. It is found that the phase noise of the light source can cause the input state to change from a Gaussian state into a non-Gaussian mixed state. For a given phase noise level, the fidelity of the non-Gaussian mixed state and the noise-free ideal state decreases monotonically as the mean photon number of input increases. Meanwhile, owing to the phase noise the deviation of the output probability distribution gradually increases with the number of detected photons increasing. Furthermore, the phase noise results in the capability of heavy sample generation (HOG), significantly decreasing. Finally, it is found that Gaussian boson sampling with photon loss is more tolerant to phase noise than the lossless case given that the mean photon number of input is the same. Our study is helpful in suppressing the phase noise in large-scale Gaussian boson sampling experiments.
      Corresponding author: Qin Jian, qj1993@mail.ustc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0308700) and the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01)
    [1]

    Harrow A W, Montanaro A 2017 Nature 549 203Google Scholar

    [2]

    Aaronson S, Arkhipov A 2011 Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing New York, USA, June 6, 2011 p333

    [3]

    Broome M A, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph T C, White A G 2013 Science 339 794Google Scholar

    [4]

    Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G R, Walmsley I A 2013 Science 339 798Google Scholar

    [5]

    Crespi A, Osellame R, Ramponi R, Brod D J, Galvão E F, Spagnolo N, Vitelli C, Maiorino E, Mataloni P, Sciarrino F 2013 Nat. Photonics 7 545Google Scholar

    [6]

    Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, Höfling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361Google Scholar

    [7]

    He Y, Ding X, Su Z E, Huang H L, Qin J, Wang C, Unsleber S, Chen C, Wang H, He Y M, Wang X L, Zhang W J, Chen S J, Schneider C, Kamp M, You L X, Wang Z, Höfling S, Lu C Y, Pan J W 2017 Phys. Rev. Lett. 118 190501Google Scholar

    [8]

    Wang H, Li W, Jiang X, He Y M, Li Y H, Ding X, Chen M C, Qin J, Peng C Z, Schneider C, Kamp M, Zhang W J, Li H, You L X, Wang Z, Dowling J P, Höfling S, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 230502Google Scholar

    [9]

    Zhong H S, Peng L C, Li Y, Hu Y, Li W, Qin J, Wu D, Zhang W, Li H, Zhang L, Wang Z, You L, Jiang X, Li L, Liu N L, Dowling J P, Lu C Y, Pan J W 2019 Sci. Bull. 64 511Google Scholar

    [10]

    Wang H, Qin J, Ding X, Chen M C, Chen S, You X, He Y M, Jiang X, You L, Wang Z, Schneider C, Renema J J, Höfling S, Lu C Y, Pan J W 2019 Phys. Rev. Lett. 123 250503Google Scholar

    [11]

    Walschaers M, Kuipers J, Urbina J D, Mayer K, Tichy M C, Richter K, Buchleitner A 2016 New J. Phys. 18 032001Google Scholar

    [12]

    Spagnolo N, Vitelli C, Bentivegna M, Brod D J, Crespi A, Flamini F, Giacomini S, Milani G, Ramponi R, Mataloni P, Osellame R, Galvão E F, Sciarrino F 2014 Nat. Photonics 8 615Google Scholar

    [13]

    Aaronson S, Brod D J 2016 Phys. Rev. A 93 012335Google Scholar

    [14]

    Renema J J, Menssen A, Clements W R, Triginer G, Kolthammer W S, Walmsley I A 2018 Phys. Rev. Lett. 120 220502Google Scholar

    [15]

    Shchesnovich V S 2019 Phys. Rev. A 100 012340Google Scholar

    [16]

    Qi H, Brod D J, Quesada N, García-Patrón R 2020 Phys. Rev. Lett. 124 100502Google Scholar

    [17]

    Lund A P, Laing A, Rahimi-Keshari S, Rudolph T, O’Brien J L, Ralph T C 2014 Phys. Rev. Lett. 113 100502Google Scholar

    [18]

    Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I 2017 Phys. Rev. Lett. 119 170501Google Scholar

    [19]

    Deshpande A, Mehta A, Vincent T, Quesada N, Hinsche M, Ioannou M, Madsen L, Lavoie J, Qi H, Eisert J, Hangleiter D, Fefferman B, Dhand I 2022 Sci. Adv. 8 eabi7894Google Scholar

    [20]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [21]

    Zhong H S, Deng Y H, Qin J, Wang H, Chen M C, Peng L C, Luo Y H, Wu D, Gong S Q, Su H, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Renema J J, Lu C Y, Pan J W 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [22]

    Madsen L S, Laudenbach F, Askarani M Falamarzi, Rortais F, Vincent T, Bulmer J F F, Miatto F M, Neuhaus L, Helt L G, Collins M J, Lita A E, Gerrits T, Nam S W, Vaidya V D, Menotti M, Dhand I, Vernon Z, Quesada N, Lavoie J 2022 Nature 606 75Google Scholar

    [23]

    Bulmer J F F, Bell B A, Chadwick R S, Jones A E, Moise D, Rigazzi A, Thorbecke J, Haus U U, Van Vaerenbergh T, Patel R B, Walmsley I A, Laing A 2022 Sci. Adv. 8 eabl9236Google Scholar

    [24]

    Oh C, Lim Y, Fefferman B, Jiang L 2022 Phys. Rev. Lett. 128 190501Google Scholar

    [25]

    Mandel L 1986 Phys. Scr. 1986 34Google Scholar

    [26]

    Campos R A, Saleh B E, Teich M C 1989 Phys. Rev. A 40 1371Google Scholar

    [27]

    Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503Google Scholar

    [28]

    Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola J M 2020 Sci. Adv. 6 eaax1950Google Scholar

  • 图 1  不同相位噪声下单模压缩真空态的Wigner函数

    Figure 1.  Wigner function of single-mode squeezed vacuum state under different phase noise

    图 2  相位噪声压缩态和理想态的保真度 (a)不同单模平均光子数$ \bar{n} $下保真度随噪声大小σ的变化; (b)输入压缩态个数$ K = 100 $时, 总保真度随$ \bar{n} $σ的变化

    Figure 2.  Fidelity between squeezed state under phase noise and the ideal state: (a) Fidelity as a function of phase noise level σ under different single-mode mean photon number $ \bar{n} $; (b) when the number of input squeezed states is $ K = 100 $, the total fidelity as a function of $ \bar{n} $ and σ.

    图 3  相位噪声对输出概率分布的影响 (a)不同相位噪声下, 噪声输出分布和理想分布的海林格距离随探测光子数的变化, 图中每个点代表10个随机干涉网络结果的均值; (b)光子数$ k = 8 $时, 典型的相位噪声下样本概率和理想样本概率(蓝色曲线)的相对误差的对数曲线(浅红色), 红色曲线为浅红色曲线的步长为15的移动平均值, 相位噪声$ \sigma = 0.8 $; (c) $ \Delta {\rm HOG} $随相位噪声大小的变化; 图(a)—(c)采用的参数为输入压缩态个数$ K = 5 $, 单模平均光子数$ \bar{n} = 1 $, 模式数$ m = 9 $

    Figure 3.  Effect of phase noise on output probability distribution: (a) Hellinger distance of phase noisy distribution and ideal distribution as a function of total detected photon number k under different noise level, each point is the mean result of 10 random choosed interferometer; (b) logarithmic curve (light red) of relative error of noisy sample probability and ideal sample probability (blue curve), the red curve is the 15-point moving mean of light red curve, phase noise $ \sigma = 0.8 $; (c) $ \Delta {\rm HOG} $ as a function of phase noise. In panels (a)−(c), the number of input squeezed states is $ K = 5 $, the single-mode mean photon number is $ \bar{n} = 1 $, the mode number is $ m = 9 $

    图 4  光子损失的影响, 保持输入平均光子数$ \bar{n} = 1 $不变 (a)不同光子损耗η下保真度和相位噪声大小的关系; (b)在相位噪声$ \sigma = 0.8 $时, 比较有光子损失$ \eta = 0.7 $情形(蓝色点)和无光子损失(红色点)下噪声分布和理想分布的海林格距离, 可以看出有损耗时海林格距离显著降低了

    Figure 4.  The effect of photon loss. Keeping the mean photon number $ \bar{n} = 1 $ unchanged: (a) Relationship between fidelity and phase noise under different photon losses; (b) for $ \sigma = 0.8 $, comparing the Hellinger distance of phase noisy distribution and the ideal distribution with photon loss $ \eta = 0.7 $ (blue point) and without photon loss (red point). The Hellinger distance is significantly lower with the photon loss case

    Baidu
  • [1]

    Harrow A W, Montanaro A 2017 Nature 549 203Google Scholar

    [2]

    Aaronson S, Arkhipov A 2011 Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing New York, USA, June 6, 2011 p333

    [3]

    Broome M A, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph T C, White A G 2013 Science 339 794Google Scholar

    [4]

    Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Thomas-Peter N, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G R, Walmsley I A 2013 Science 339 798Google Scholar

    [5]

    Crespi A, Osellame R, Ramponi R, Brod D J, Galvão E F, Spagnolo N, Vitelli C, Maiorino E, Mataloni P, Sciarrino F 2013 Nat. Photonics 7 545Google Scholar

    [6]

    Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, Höfling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361Google Scholar

    [7]

    He Y, Ding X, Su Z E, Huang H L, Qin J, Wang C, Unsleber S, Chen C, Wang H, He Y M, Wang X L, Zhang W J, Chen S J, Schneider C, Kamp M, You L X, Wang Z, Höfling S, Lu C Y, Pan J W 2017 Phys. Rev. Lett. 118 190501Google Scholar

    [8]

    Wang H, Li W, Jiang X, He Y M, Li Y H, Ding X, Chen M C, Qin J, Peng C Z, Schneider C, Kamp M, Zhang W J, Li H, You L X, Wang Z, Dowling J P, Höfling S, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 230502Google Scholar

    [9]

    Zhong H S, Peng L C, Li Y, Hu Y, Li W, Qin J, Wu D, Zhang W, Li H, Zhang L, Wang Z, You L, Jiang X, Li L, Liu N L, Dowling J P, Lu C Y, Pan J W 2019 Sci. Bull. 64 511Google Scholar

    [10]

    Wang H, Qin J, Ding X, Chen M C, Chen S, You X, He Y M, Jiang X, You L, Wang Z, Schneider C, Renema J J, Höfling S, Lu C Y, Pan J W 2019 Phys. Rev. Lett. 123 250503Google Scholar

    [11]

    Walschaers M, Kuipers J, Urbina J D, Mayer K, Tichy M C, Richter K, Buchleitner A 2016 New J. Phys. 18 032001Google Scholar

    [12]

    Spagnolo N, Vitelli C, Bentivegna M, Brod D J, Crespi A, Flamini F, Giacomini S, Milani G, Ramponi R, Mataloni P, Osellame R, Galvão E F, Sciarrino F 2014 Nat. Photonics 8 615Google Scholar

    [13]

    Aaronson S, Brod D J 2016 Phys. Rev. A 93 012335Google Scholar

    [14]

    Renema J J, Menssen A, Clements W R, Triginer G, Kolthammer W S, Walmsley I A 2018 Phys. Rev. Lett. 120 220502Google Scholar

    [15]

    Shchesnovich V S 2019 Phys. Rev. A 100 012340Google Scholar

    [16]

    Qi H, Brod D J, Quesada N, García-Patrón R 2020 Phys. Rev. Lett. 124 100502Google Scholar

    [17]

    Lund A P, Laing A, Rahimi-Keshari S, Rudolph T, O’Brien J L, Ralph T C 2014 Phys. Rev. Lett. 113 100502Google Scholar

    [18]

    Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex I 2017 Phys. Rev. Lett. 119 170501Google Scholar

    [19]

    Deshpande A, Mehta A, Vincent T, Quesada N, Hinsche M, Ioannou M, Madsen L, Lavoie J, Qi H, Eisert J, Hangleiter D, Fefferman B, Dhand I 2022 Sci. Adv. 8 eabi7894Google Scholar

    [20]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [21]

    Zhong H S, Deng Y H, Qin J, Wang H, Chen M C, Peng L C, Luo Y H, Wu D, Gong S Q, Su H, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Renema J J, Lu C Y, Pan J W 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [22]

    Madsen L S, Laudenbach F, Askarani M Falamarzi, Rortais F, Vincent T, Bulmer J F F, Miatto F M, Neuhaus L, Helt L G, Collins M J, Lita A E, Gerrits T, Nam S W, Vaidya V D, Menotti M, Dhand I, Vernon Z, Quesada N, Lavoie J 2022 Nature 606 75Google Scholar

    [23]

    Bulmer J F F, Bell B A, Chadwick R S, Jones A E, Moise D, Rigazzi A, Thorbecke J, Haus U U, Van Vaerenbergh T, Patel R B, Walmsley I A, Laing A 2022 Sci. Adv. 8 eabl9236Google Scholar

    [24]

    Oh C, Lim Y, Fefferman B, Jiang L 2022 Phys. Rev. Lett. 128 190501Google Scholar

    [25]

    Mandel L 1986 Phys. Scr. 1986 34Google Scholar

    [26]

    Campos R A, Saleh B E, Teich M C 1989 Phys. Rev. A 40 1371Google Scholar

    [27]

    Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503Google Scholar

    [28]

    Banchi L, Fingerhuth M, Babej T, Ing C, Arrazola J M 2020 Sci. Adv. 6 eaax1950Google Scholar

  • [1] Ma Bo-Wen, Dai Wen, Meng Fei, Tao Jia-Ning, Wu Zi-Ling, Shi Yan-Qing, Fang Zhan-Jun, Hu Ming-Lie, Song You-Jian. Using asynchronous optical sampling to measure timing jitter of electro-optic frequency combs. Acta Physica Sinica, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [2] Zhou Pai, Li Xia-Xia, Xing Xue-Yan, Chen Yu-Hui, Zhang Xiang-Dong. Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, 2022, 71(6): 064203. doi: 10.7498/aps.71.20211803
    [3] Zhou Wen-Hao, Wang Yao, Weng Wen-Kang, Jin Xian-Min. Research progress of integrated optical quantum computing. Acta Physica Sinica, 2022, 71(24): 240302. doi: 10.7498/aps.71.20221782
    [4] Fan Si-Chen, Yang Fan, Ruan Jun. Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator. Acta Physica Sinica, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [5] Xing Ze-Yu, Li Zhi-Hao, Feng Tian-Feng, Zhou Xiao-Qi. High-speed calibration method for cascaded phase shifters in integrated quantum photonic chips. Acta Physica Sinica, 2021, 70(18): 184207. doi: 10.7498/aps.70.20210401
    [6] Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211803
    [7] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [8] Sun Tai-Ping, Wu Yu-Chun, Guo Guo-Ping. Quantum generative models for data generation. Acta Physica Sinica, 2021, 70(14): 140304. doi: 10.7498/aps.70.20210930
    [9] Zhang Qian, Li Meng, Gong Qi-Huang, Li Yan. Femtosecond laser direct writing of optical quantum logic gates. Acta Physica Sinica, 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [10] Jiang Hai-Feng. Progresses of ultrastable optical-cavity-based microwave source. Acta Physica Sinica, 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [11] Xiang Xiao, Wang Shao-Feng, Hou Fei-Yan, Quan Run-Ai, Zhai Yi-Wei, Wang Meng-Meng, Zhou Cong-Hua, Xu Guan-Jun, Dong Rui-Fang, Liu Tao, Zhang Shou-Gang. A broadband passive cavity for analyzing and filtering the noise of a femtosecond laser. Acta Physica Sinica, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [12] Wang Ya-Dong, Gan Xue-Tao, Ju Pei, Pang Yan, Yuan Lin-Guang, Zhao Jian-Lin. Control of topological structure in high-order optical vortices by use of noncanonical helical phase. Acta Physica Sinica, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [13] Liu Zhi-Min, Zhao Su-Ling, Xu Zheng, Gao Song, Yang Yi-Fan. Luminescence characteristics of PVK doped with red-emitting quantum dots. Acta Physica Sinica, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [14] Ding Xue-Li, Li Yu-Ye. Phase noise induced single or double coherence resonances of neural firing. Acta Physica Sinica, 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [15] Liu Li-Xiang, Dong Li-Juan, Liu Yan-Hong, Yang Cheng-Quan, Shi Yun-Long. Properties of photonic quantum well structures containing left-handed materials. Acta Physica Sinica, 2012, 61(13): 134210. doi: 10.7498/aps.61.134210
    [16] Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system. Acta Physica Sinica, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [17] Feng MingMing, Qin XiaoLin, Zhou ChunYuan, Xiong Li, Ding LiangEn. Quantum random number generator based on polarization. Acta Physica Sinica, 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
    [18] LIAO JING, LIANG CHUANG, WEI YA-JUN, WU LING-AN, PAN SHAO-HUA, YAO DE-CHENG. TRUE RANDOM NUMBER GENERATOR BASED ON A PHOTON BEAMSPLITTER. Acta Physica Sinica, 2001, 50(3): 467-472. doi: 10.7498/aps.50.467
    [19] LIU WEN-SEN, MA GUI-RONG, ZHANG JIU-AN, LIANG JIU-QING. SQUEEZED BOSON PAIR NUMBER STATES IN QUANTUM BOSE FLUID. Acta Physica Sinica, 1997, 46(9): 1699-1709. doi: 10.7498/aps.46.1699
    [20] WANG CHIH-CHIANG. THE RUBY OPTICAL MASER. Acta Physica Sinica, 1964, 20(1): 63-71. doi: 10.7498/aps.20.63
Metrics
  • Abstract views:  3838
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2022
  • Accepted Date:  21 November 2022
  • Available Online:  05 January 2023
  • Published Online:  05 March 2023

/

返回文章
返回
Baidu
map