-
In recent years, many generation-based machine learning algorithms such as generative adversarial networks, Boltzmann machine, auto-encoder, etc. are widely used in data generation and probability distribution simulation. On the other hand, the combined algorithms of quantum computation and classical machine learning algorithms are proposed in various styles. Especially, there exist many relevant researches about quantum generative models, which are regarded as the branch of quantum machine learning. Quantum generative models are hybrid quantum-classical algorithms, in which parameterized quantum circuits are introduced to obtain the cost function of the task as well as its gradient, and then classical optimization algorithms are used to find the optima. Compared with its classical counterpart, quantum generative models map the data stream to high-dimensional Hilbert space with parameterized quantum circuits. In the mapping space, data features are easier to learn, which can surpass classical generative models in some tasks. Besides, quantum generative models are potential to realize the quantum advantage in noisy intermediate-scale quantum devices.
[1] Zhu J Y, Krähenbühl P, Shechtman E, Efros A A 2016 European Conference on Computer Vision, Berlin, September 16, 2016 p597
[2] Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K 2016 arXiv: 1609.03499 [cs.SD]
[3] Gómez-Bombarelli R, Wei J N, Duvenaud D, Hernández-Lobato J M, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel T D, Adams R P, Aspuru-Guzik A 2018 ACS Cent. Sci. 4 268
Google Scholar
[4] Isola P, Zhu J Y, Zhou T, Efros A A 2016 arXiv: 1611.07004[cs.CV]
[5] Dallaire-Demers P L, Killoran N 2018 Phys. Rev. A 98 012324
Google Scholar
[6] Lloyd S, Weedbrook C 2018 Phys. Rev. Lett. 121 040502
Google Scholar
[7] Benedetti M, Garcia-Pintos D, Perdomo O, Leyton-Ortega V, Nam Y, Perdomo-Ortiz A 2019 npj Quantum Inf. 5 1
[8] Liu J G, Wang L 2018 Phys. Rev. A 98 062324
Google Scholar
[9] Amin M H, Andriyash E, Rolfe J, Kulchytskyy B, Melko R 2018 Phys. Rev. X 8 021050
[10] Khoshaman A, Vinci W, Denis B, Andriyash E, Amin M H 2019 Quantum Sci. Technol. 4 014001
[11] Benedetti M, Realpe-Gómez J, Biswas R, PerdomoOrtiz A 2017 Phys. Rev. X 7 041052
[12] Kieferová M, Wiebe N 2017 Phys. Rev. A 96 062327
Google Scholar
[13] Romero J, Olson J P, Aspuru-Guzik A 2017 Quantum Sci. Technol. 2 045001
Google Scholar
[14] Lamata L, Alvarez-Rodriguez U, Martn-Guerrero J, Sanz M, Solano E 2018 Quantum Sci. Technol. 4 014007
Google Scholar
[15] Li R, Alvarez-Rodriguez U, Lamata L, Solano E 2017 Quantum Meas. Quantum Metrol. 4 1
[16] Du Y, Liu T, Tao D 2018 arXiv: 1805.11089 [quant-ph]
[17] Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou Z Q, Love P J, Aspuru-Guzik A, O'Brien J L 2014 Nat. Commun. 5 4213
Google Scholar
[18] Nielsen M A, Chuang I L 2002 Quantum computation and quantum information (Cambridge: Cambridge University Press) pp221–225
[19] Preskill J 2018 Quantum 2 79
Google Scholar
[20] Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502
Google Scholar
[21] Huang H L, Du Y, Gong M, Zhao Y, Wu Y, Wang C, Li S, Liang F, Lin J, Xu Y, Yang R, Liu T, Hsieh M H, Deng H, Rong H, Peng C Z, Lu C Y, Chen Y A, Tao D, Zhu X, Pan J W 2020 arXiv: 2010.06201 [quant-ph]
[22] Du Y, Hsieh M-H, Liu T, Tao D 2020 Phys. Rev. Research 2 033125
Google Scholar
[23] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, WardeFarley D, Ozair S, Courville A, Bengio Y 2014 Proceedings of the 27th International Conference on Neural Information Processing Systems 2 pp2672–2680
[24] Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A C 2017 arXiv: 1704.00028 [cs.LG]
[25] Zoufal C, Lucchi A, Woerner S 2019 npj Quantum Inf. 5 103
Google Scholar
[26] Zeng J, Wu Y, Liu J G, Wang L, Hu J 2019 Phys. Rev. A 99 052306
Google Scholar
[27] Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N 2019 Phys. Rev. A 99 032331
Google Scholar
[28] MacKay D J C 2002 Information Theory, Inference & Learning Algorithms (Cambridge: Cambridge University)
[29] Situ H, He Z, Wang Y, Li L, Zheng S 2020 Information Sciences 538 193
Google Scholar
[30] Hu L, Wu S H, Cai W, Ma Y, Mu X, Xu Y, Wang H, Song Y, Deng D L, Zou C L, Sun L 2019 Sci. Adv. 5 eaav2761
Google Scholar
[31] Rudolph M S, Toussaint N B, Katabarwa A, Johri S, Peropadre B, Perdomo-Ortiz A 2020 arXiv: 2012.03924 v2 [quant-ph]
[32] Cheng S, Chen J, Wang L 2018 Entropy 20 583
Google Scholar
[33] Hinton G E, Sejnowski T J 1986 In Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1 282
[34] Hinton G E 2012 In Neural Networks: Tricks of the Trade Berlin Heidelberg, Germany, 2012 p599
[35] Coyle B, Mills D, Danos V, Kashefi E 2020 npj Quantum Inf. 6 60
Google Scholar
[36] Hofmann T, Schölkopf B, Smola A J 2008 Ann. Statist. 36 1171
[37] Hinton G E, Sejnowski T J 1983 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Washington D. C., USA, 1983 p448
[38] Hinton G E, Osindero S, Teh Y-W 2006 Neural Comput. 18 1527
Google Scholar
[39] Salakhutdinov R, Hinton G 2009 Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics Florida, USA 2009 p448
[40] Smolensky P 1986 Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol.1) (Cambridge: MIT press) pp194–281
[41] Dorband J E 2015 12th International Conference on Information Technology-New Generations Las Vegas, USA, April 13–15, 2015 p703
[42] Buhrman H, Cleve R, Watrous J, Wolf R D 2001 Phys. Rev. Lett. 87 167902
Google Scholar
[43] Ding Y, Lamata L, Sanz M, Chen X, Solano E 2019 Adv. Quantum Technol. 2 1800065
Google Scholar
[44] Pepper A, Tischler N, Pryde G J 2019 Phys. Rev. Lett. 122 060501
Google Scholar
[45] Bondarenko D, Feldmann P 2020 Phys. Rev. Lett. 124 130502
Google Scholar
[46] Huang C J, Ma H, Yin Q, Tang J F, Dong D, Chen C, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. A 102 032412
Google Scholar
[47] Cao C, Wang X 2021 Phys. Rev. Applied. 15 054012
Google Scholar
[48] Cerezo M, Sone A, Volkoff T, Patrick L C, Coles J 2021 Nat. Commun. 12 1791
Google Scholar
[49] Gao X, Zhang Z Y, Duan L-M 2018 Sci. Adv. 4 eaat9004
Google Scholar
[50] Gao X, Anschuetz E R, Wang S T, Cirac J I, Lukin M D 2021 arXiv: 2101.08354 v1 [quant-ph]
-
-
[1] Zhu J Y, Krähenbühl P, Shechtman E, Efros A A 2016 European Conference on Computer Vision, Berlin, September 16, 2016 p597
[2] Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K 2016 arXiv: 1609.03499 [cs.SD]
[3] Gómez-Bombarelli R, Wei J N, Duvenaud D, Hernández-Lobato J M, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel T D, Adams R P, Aspuru-Guzik A 2018 ACS Cent. Sci. 4 268
Google Scholar
[4] Isola P, Zhu J Y, Zhou T, Efros A A 2016 arXiv: 1611.07004[cs.CV]
[5] Dallaire-Demers P L, Killoran N 2018 Phys. Rev. A 98 012324
Google Scholar
[6] Lloyd S, Weedbrook C 2018 Phys. Rev. Lett. 121 040502
Google Scholar
[7] Benedetti M, Garcia-Pintos D, Perdomo O, Leyton-Ortega V, Nam Y, Perdomo-Ortiz A 2019 npj Quantum Inf. 5 1
[8] Liu J G, Wang L 2018 Phys. Rev. A 98 062324
Google Scholar
[9] Amin M H, Andriyash E, Rolfe J, Kulchytskyy B, Melko R 2018 Phys. Rev. X 8 021050
[10] Khoshaman A, Vinci W, Denis B, Andriyash E, Amin M H 2019 Quantum Sci. Technol. 4 014001
[11] Benedetti M, Realpe-Gómez J, Biswas R, PerdomoOrtiz A 2017 Phys. Rev. X 7 041052
[12] Kieferová M, Wiebe N 2017 Phys. Rev. A 96 062327
Google Scholar
[13] Romero J, Olson J P, Aspuru-Guzik A 2017 Quantum Sci. Technol. 2 045001
Google Scholar
[14] Lamata L, Alvarez-Rodriguez U, Martn-Guerrero J, Sanz M, Solano E 2018 Quantum Sci. Technol. 4 014007
Google Scholar
[15] Li R, Alvarez-Rodriguez U, Lamata L, Solano E 2017 Quantum Meas. Quantum Metrol. 4 1
[16] Du Y, Liu T, Tao D 2018 arXiv: 1805.11089 [quant-ph]
[17] Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou Z Q, Love P J, Aspuru-Guzik A, O'Brien J L 2014 Nat. Commun. 5 4213
Google Scholar
[18] Nielsen M A, Chuang I L 2002 Quantum computation and quantum information (Cambridge: Cambridge University Press) pp221–225
[19] Preskill J 2018 Quantum 2 79
Google Scholar
[20] Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502
Google Scholar
[21] Huang H L, Du Y, Gong M, Zhao Y, Wu Y, Wang C, Li S, Liang F, Lin J, Xu Y, Yang R, Liu T, Hsieh M H, Deng H, Rong H, Peng C Z, Lu C Y, Chen Y A, Tao D, Zhu X, Pan J W 2020 arXiv: 2010.06201 [quant-ph]
[22] Du Y, Hsieh M-H, Liu T, Tao D 2020 Phys. Rev. Research 2 033125
Google Scholar
[23] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, WardeFarley D, Ozair S, Courville A, Bengio Y 2014 Proceedings of the 27th International Conference on Neural Information Processing Systems 2 pp2672–2680
[24] Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A C 2017 arXiv: 1704.00028 [cs.LG]
[25] Zoufal C, Lucchi A, Woerner S 2019 npj Quantum Inf. 5 103
Google Scholar
[26] Zeng J, Wu Y, Liu J G, Wang L, Hu J 2019 Phys. Rev. A 99 052306
Google Scholar
[27] Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N 2019 Phys. Rev. A 99 032331
Google Scholar
[28] MacKay D J C 2002 Information Theory, Inference & Learning Algorithms (Cambridge: Cambridge University)
[29] Situ H, He Z, Wang Y, Li L, Zheng S 2020 Information Sciences 538 193
Google Scholar
[30] Hu L, Wu S H, Cai W, Ma Y, Mu X, Xu Y, Wang H, Song Y, Deng D L, Zou C L, Sun L 2019 Sci. Adv. 5 eaav2761
Google Scholar
[31] Rudolph M S, Toussaint N B, Katabarwa A, Johri S, Peropadre B, Perdomo-Ortiz A 2020 arXiv: 2012.03924 v2 [quant-ph]
[32] Cheng S, Chen J, Wang L 2018 Entropy 20 583
Google Scholar
[33] Hinton G E, Sejnowski T J 1986 In Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1 282
[34] Hinton G E 2012 In Neural Networks: Tricks of the Trade Berlin Heidelberg, Germany, 2012 p599
[35] Coyle B, Mills D, Danos V, Kashefi E 2020 npj Quantum Inf. 6 60
Google Scholar
[36] Hofmann T, Schölkopf B, Smola A J 2008 Ann. Statist. 36 1171
[37] Hinton G E, Sejnowski T J 1983 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Washington D. C., USA, 1983 p448
[38] Hinton G E, Osindero S, Teh Y-W 2006 Neural Comput. 18 1527
Google Scholar
[39] Salakhutdinov R, Hinton G 2009 Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics Florida, USA 2009 p448
[40] Smolensky P 1986 Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol.1) (Cambridge: MIT press) pp194–281
[41] Dorband J E 2015 12th International Conference on Information Technology-New Generations Las Vegas, USA, April 13–15, 2015 p703
[42] Buhrman H, Cleve R, Watrous J, Wolf R D 2001 Phys. Rev. Lett. 87 167902
Google Scholar
[43] Ding Y, Lamata L, Sanz M, Chen X, Solano E 2019 Adv. Quantum Technol. 2 1800065
Google Scholar
[44] Pepper A, Tischler N, Pryde G J 2019 Phys. Rev. Lett. 122 060501
Google Scholar
[45] Bondarenko D, Feldmann P 2020 Phys. Rev. Lett. 124 130502
Google Scholar
[46] Huang C J, Ma H, Yin Q, Tang J F, Dong D, Chen C, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. A 102 032412
Google Scholar
[47] Cao C, Wang X 2021 Phys. Rev. Applied. 15 054012
Google Scholar
[48] Cerezo M, Sone A, Volkoff T, Patrick L C, Coles J 2021 Nat. Commun. 12 1791
Google Scholar
[49] Gao X, Zhang Z Y, Duan L-M 2018 Sci. Adv. 4 eaat9004
Google Scholar
[50] Gao X, Anschuetz E R, Wang S T, Cirac J I, Lukin M D 2021 arXiv: 2101.08354 v1 [quant-ph]
Catalog
Metrics
- Abstract views: 8013
- PDF Downloads: 379
- Cited By: 0