搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子生成模型

孙太平 吴玉椿 郭国平

引用本文:
Citation:

量子生成模型

孙太平, 吴玉椿, 郭国平

Quantum generative models for data generation

Sun Tai-Ping, Wu Yu-Chun, Guo Guo-Ping
PDF
HTML
导出引用
  • 近年来, 很多基于生成模型的机器学习算法, 如生成对抗网络、玻尔兹曼机、自编码器等, 在数据生成、概率模拟等方面有广泛的应用. 另一方面, 融合量子计算和经典机器学习的量子机器学习算法也不断被提出. 特别地, 量子生成模型作为量子机器学习的分支, 目前已有很多进展. 量子生成算法是一类量子-经典混合算法, 算法中引入参数量子线路, 通过执行参数线路得到损失函数及其梯度, 然后通过经典的优化算法来优化求解, 从而完成对应的生成任务. 与经典生成模型相比, 量子生成模型通过参数线路将数据流映射到高维希尔伯特空间, 在高维空间中学习数据的特征, 从而在一些特定问题上超越经典生成模型. 在中等规模含噪声的量子体系下, 量子生成模型是一类有潜力实现量子优势的量子机器学习算法.
    In recent years, many generation-based machine learning algorithms such as generative adversarial networks, Boltzmann machine, auto-encoder, etc. are widely used in data generation and probability distribution simulation. On the other hand, the combined algorithms of quantum computation and classical machine learning algorithms are proposed in various styles. Especially, there exist many relevant researches about quantum generative models, which are regarded as the branch of quantum machine learning. Quantum generative models are hybrid quantum-classical algorithms, in which parameterized quantum circuits are introduced to obtain the cost function of the task as well as its gradient, and then classical optimization algorithms are used to find the optima. Compared with its classical counterpart, quantum generative models map the data stream to high-dimensional Hilbert space with parameterized quantum circuits. In the mapping space, data features are easier to learn, which can surpass classical generative models in some tasks. Besides, quantum generative models are potential to realize the quantum advantage in noisy intermediate-scale quantum devices.
      通信作者: 吴玉椿, wuyuchun@ustc.edu.cn
    • 基金项目: 国家重点研究发展计划(批准号: 2016YFA0301700)、国家自然科学基金(批准号: 11625419)、中国科学院战略重点研究计划(批准号: XDB24030600)和安徽省量子信息技术倡议(批准号: AHY080000)资助的课题
      Corresponding author: Wu Yu-Chun, wuyuchun@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301700), the National Natural Science Foundation of China (Grant No. 11625419), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030600), and the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY080000)
    [1]

    Zhu J Y, Krähenbühl P, Shechtman E, Efros A A 2016 European Conference on Computer Vision, Berlin, September 16, 2016 p597

    [2]

    Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K 2016 arXiv: 1609.03499 [cs.SD]

    [3]

    Gómez-Bombarelli R, Wei J N, Duvenaud D, Hernández-Lobato J M, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel T D, Adams R P, Aspuru-Guzik A 2018 ACS Cent. Sci. 4 268Google Scholar

    [4]

    Isola P, Zhu J Y, Zhou T, Efros A A 2016 arXiv: 1611.07004[cs.CV]

    [5]

    Dallaire-Demers P L, Killoran N 2018 Phys. Rev. A 98 012324Google Scholar

    [6]

    Lloyd S, Weedbrook C 2018 Phys. Rev. Lett. 121 040502Google Scholar

    [7]

    Benedetti M, Garcia-Pintos D, Perdomo O, Leyton-Ortega V, Nam Y, Perdomo-Ortiz A 2019 npj Quantum Inf. 5 1

    [8]

    Liu J G, Wang L 2018 Phys. Rev. A 98 062324Google Scholar

    [9]

    Amin M H, Andriyash E, Rolfe J, Kulchytskyy B, Melko R 2018 Phys. Rev. X 8 021050

    [10]

    Khoshaman A, Vinci W, Denis B, Andriyash E, Amin M H 2019 Quantum Sci. Technol. 4 014001

    [11]

    Benedetti M, Realpe-Gómez J, Biswas R, PerdomoOrtiz A 2017 Phys. Rev. X 7 041052

    [12]

    Kieferová M, Wiebe N 2017 Phys. Rev. A 96 062327Google Scholar

    [13]

    Romero J, Olson J P, Aspuru-Guzik A 2017 Quantum Sci. Technol. 2 045001Google Scholar

    [14]

    Lamata L, Alvarez-Rodriguez U, Martn-Guerrero J, Sanz M, Solano E 2018 Quantum Sci. Technol. 4 014007Google Scholar

    [15]

    Li R, Alvarez-Rodriguez U, Lamata L, Solano E 2017 Quantum Meas. Quantum Metrol. 4 1

    [16]

    Du Y, Liu T, Tao D 2018 arXiv: 1805.11089 [quant-ph]

    [17]

    Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou Z Q, Love P J, Aspuru-Guzik A, O'Brien J L 2014 Nat. Commun. 5 4213Google Scholar

    [18]

    Nielsen M A, Chuang I L 2002 Quantum computation and quantum information (Cambridge: Cambridge University Press) pp221–225

    [19]

    Preskill J 2018 Quantum 2 79Google Scholar

    [20]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502Google Scholar

    [21]

    Huang H L, Du Y, Gong M, Zhao Y, Wu Y, Wang C, Li S, Liang F, Lin J, Xu Y, Yang R, Liu T, Hsieh M H, Deng H, Rong H, Peng C Z, Lu C Y, Chen Y A, Tao D, Zhu X, Pan J W 2020 arXiv: 2010.06201 [quant-ph]

    [22]

    Du Y, Hsieh M-H, Liu T, Tao D 2020 Phys. Rev. Research 2 033125Google Scholar

    [23]

    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, WardeFarley D, Ozair S, Courville A, Bengio Y 2014 Proceedings of the 27th International Conference on Neural Information Processing Systems 2 pp2672–2680

    [24]

    Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A C 2017 arXiv: 1704.00028 [cs.LG]

    [25]

    Zoufal C, Lucchi A, Woerner S 2019 npj Quantum Inf. 5 103Google Scholar

    [26]

    Zeng J, Wu Y, Liu J G, Wang L, Hu J 2019 Phys. Rev. A 99 052306Google Scholar

    [27]

    Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N 2019 Phys. Rev. A 99 032331Google Scholar

    [28]

    MacKay D J C 2002 Information Theory, Inference & Learning Algorithms (Cambridge: Cambridge University)

    [29]

    Situ H, He Z, Wang Y, Li L, Zheng S 2020 Information Sciences 538 193Google Scholar

    [30]

    Hu L, Wu S H, Cai W, Ma Y, Mu X, Xu Y, Wang H, Song Y, Deng D L, Zou C L, Sun L 2019 Sci. Adv. 5 eaav2761Google Scholar

    [31]

    Rudolph M S, Toussaint N B, Katabarwa A, Johri S, Peropadre B, Perdomo-Ortiz A 2020 arXiv: 2012.03924 v2 [quant-ph]

    [32]

    Cheng S, Chen J, Wang L 2018 Entropy 20 583Google Scholar

    [33]

    Hinton G E, Sejnowski T J 1986 In Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1 282

    [34]

    Hinton G E 2012 In Neural Networks: Tricks of the Trade Berlin Heidelberg, Germany, 2012 p599

    [35]

    Coyle B, Mills D, Danos V, Kashefi E 2020 npj Quantum Inf. 6 60Google Scholar

    [36]

    Hofmann T, Schölkopf B, Smola A J 2008 Ann. Statist. 36 1171

    [37]

    Hinton G E, Sejnowski T J 1983 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Washington D. C., USA, 1983 p448

    [38]

    Hinton G E, Osindero S, Teh Y-W 2006 Neural Comput. 18 1527Google Scholar

    [39]

    Salakhutdinov R, Hinton G 2009 Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics Florida, USA 2009 p448

    [40]

    Smolensky P 1986 Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol.1) (Cambridge: MIT press) pp194–281

    [41]

    Dorband J E 2015 12th International Conference on Information Technology-New Generations Las Vegas, USA, April 13–15, 2015 p703

    [42]

    Buhrman H, Cleve R, Watrous J, Wolf R D 2001 Phys. Rev. Lett. 87 167902Google Scholar

    [43]

    Ding Y, Lamata L, Sanz M, Chen X, Solano E 2019 Adv. Quantum Technol. 2 1800065Google Scholar

    [44]

    Pepper A, Tischler N, Pryde G J 2019 Phys. Rev. Lett. 122 060501Google Scholar

    [45]

    Bondarenko D, Feldmann P 2020 Phys. Rev. Lett. 124 130502Google Scholar

    [46]

    Huang C J, Ma H, Yin Q, Tang J F, Dong D, Chen C, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. A 102 032412Google Scholar

    [47]

    Cao C, Wang X 2021 Phys. Rev. Applied. 15 054012Google Scholar

    [48]

    Cerezo M, Sone A, Volkoff T, Patrick L C, Coles J 2021 Nat. Commun. 12 1791Google Scholar

    [49]

    Gao X, Zhang Z Y, Duan L-M 2018 Sci. Adv. 4 eaat9004Google Scholar

    [50]

    Gao X, Anschuetz E R, Wang S T, Cirac J I, Lukin M D 2021 arXiv: 2101.08354 v1 [quant-ph]

  • 图 1  量子生成对抗网络结构[5]

    Fig. 1.  The general structure of QGAN[5].

    图 2  量子自编码器的训练示意图, 其中$ {{{p}}}$表示变量, 摘自[13]

    Fig. 2.  Schematic representation of the hybrid scheme for training a quantum autoencoder where $ {{{p}}}$ represents variables, image from[13].

    图 3  经典和量子生成模型 (a) 因子图表示; (b)张量网络态表示; (c)量子生成模型定义[49]

    Fig. 3.  Classical and quantum generative models: (a) Illustration of a factor graph; (b) illustration of a tensor network state; (c) QGM definition[49]

    图 A1  参数量子线路示意图

    Fig. A1.  Illustration of MPQCs.

    Baidu
  • [1]

    Zhu J Y, Krähenbühl P, Shechtman E, Efros A A 2016 European Conference on Computer Vision, Berlin, September 16, 2016 p597

    [2]

    Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K 2016 arXiv: 1609.03499 [cs.SD]

    [3]

    Gómez-Bombarelli R, Wei J N, Duvenaud D, Hernández-Lobato J M, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel T D, Adams R P, Aspuru-Guzik A 2018 ACS Cent. Sci. 4 268Google Scholar

    [4]

    Isola P, Zhu J Y, Zhou T, Efros A A 2016 arXiv: 1611.07004[cs.CV]

    [5]

    Dallaire-Demers P L, Killoran N 2018 Phys. Rev. A 98 012324Google Scholar

    [6]

    Lloyd S, Weedbrook C 2018 Phys. Rev. Lett. 121 040502Google Scholar

    [7]

    Benedetti M, Garcia-Pintos D, Perdomo O, Leyton-Ortega V, Nam Y, Perdomo-Ortiz A 2019 npj Quantum Inf. 5 1

    [8]

    Liu J G, Wang L 2018 Phys. Rev. A 98 062324Google Scholar

    [9]

    Amin M H, Andriyash E, Rolfe J, Kulchytskyy B, Melko R 2018 Phys. Rev. X 8 021050

    [10]

    Khoshaman A, Vinci W, Denis B, Andriyash E, Amin M H 2019 Quantum Sci. Technol. 4 014001

    [11]

    Benedetti M, Realpe-Gómez J, Biswas R, PerdomoOrtiz A 2017 Phys. Rev. X 7 041052

    [12]

    Kieferová M, Wiebe N 2017 Phys. Rev. A 96 062327Google Scholar

    [13]

    Romero J, Olson J P, Aspuru-Guzik A 2017 Quantum Sci. Technol. 2 045001Google Scholar

    [14]

    Lamata L, Alvarez-Rodriguez U, Martn-Guerrero J, Sanz M, Solano E 2018 Quantum Sci. Technol. 4 014007Google Scholar

    [15]

    Li R, Alvarez-Rodriguez U, Lamata L, Solano E 2017 Quantum Meas. Quantum Metrol. 4 1

    [16]

    Du Y, Liu T, Tao D 2018 arXiv: 1805.11089 [quant-ph]

    [17]

    Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou Z Q, Love P J, Aspuru-Guzik A, O'Brien J L 2014 Nat. Commun. 5 4213Google Scholar

    [18]

    Nielsen M A, Chuang I L 2002 Quantum computation and quantum information (Cambridge: Cambridge University Press) pp221–225

    [19]

    Preskill J 2018 Quantum 2 79Google Scholar

    [20]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502Google Scholar

    [21]

    Huang H L, Du Y, Gong M, Zhao Y, Wu Y, Wang C, Li S, Liang F, Lin J, Xu Y, Yang R, Liu T, Hsieh M H, Deng H, Rong H, Peng C Z, Lu C Y, Chen Y A, Tao D, Zhu X, Pan J W 2020 arXiv: 2010.06201 [quant-ph]

    [22]

    Du Y, Hsieh M-H, Liu T, Tao D 2020 Phys. Rev. Research 2 033125Google Scholar

    [23]

    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, WardeFarley D, Ozair S, Courville A, Bengio Y 2014 Proceedings of the 27th International Conference on Neural Information Processing Systems 2 pp2672–2680

    [24]

    Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A C 2017 arXiv: 1704.00028 [cs.LG]

    [25]

    Zoufal C, Lucchi A, Woerner S 2019 npj Quantum Inf. 5 103Google Scholar

    [26]

    Zeng J, Wu Y, Liu J G, Wang L, Hu J 2019 Phys. Rev. A 99 052306Google Scholar

    [27]

    Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N 2019 Phys. Rev. A 99 032331Google Scholar

    [28]

    MacKay D J C 2002 Information Theory, Inference & Learning Algorithms (Cambridge: Cambridge University)

    [29]

    Situ H, He Z, Wang Y, Li L, Zheng S 2020 Information Sciences 538 193Google Scholar

    [30]

    Hu L, Wu S H, Cai W, Ma Y, Mu X, Xu Y, Wang H, Song Y, Deng D L, Zou C L, Sun L 2019 Sci. Adv. 5 eaav2761Google Scholar

    [31]

    Rudolph M S, Toussaint N B, Katabarwa A, Johri S, Peropadre B, Perdomo-Ortiz A 2020 arXiv: 2012.03924 v2 [quant-ph]

    [32]

    Cheng S, Chen J, Wang L 2018 Entropy 20 583Google Scholar

    [33]

    Hinton G E, Sejnowski T J 1986 In Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1 282

    [34]

    Hinton G E 2012 In Neural Networks: Tricks of the Trade Berlin Heidelberg, Germany, 2012 p599

    [35]

    Coyle B, Mills D, Danos V, Kashefi E 2020 npj Quantum Inf. 6 60Google Scholar

    [36]

    Hofmann T, Schölkopf B, Smola A J 2008 Ann. Statist. 36 1171

    [37]

    Hinton G E, Sejnowski T J 1983 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Washington D. C., USA, 1983 p448

    [38]

    Hinton G E, Osindero S, Teh Y-W 2006 Neural Comput. 18 1527Google Scholar

    [39]

    Salakhutdinov R, Hinton G 2009 Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics Florida, USA 2009 p448

    [40]

    Smolensky P 1986 Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol.1) (Cambridge: MIT press) pp194–281

    [41]

    Dorband J E 2015 12th International Conference on Information Technology-New Generations Las Vegas, USA, April 13–15, 2015 p703

    [42]

    Buhrman H, Cleve R, Watrous J, Wolf R D 2001 Phys. Rev. Lett. 87 167902Google Scholar

    [43]

    Ding Y, Lamata L, Sanz M, Chen X, Solano E 2019 Adv. Quantum Technol. 2 1800065Google Scholar

    [44]

    Pepper A, Tischler N, Pryde G J 2019 Phys. Rev. Lett. 122 060501Google Scholar

    [45]

    Bondarenko D, Feldmann P 2020 Phys. Rev. Lett. 124 130502Google Scholar

    [46]

    Huang C J, Ma H, Yin Q, Tang J F, Dong D, Chen C, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. A 102 032412Google Scholar

    [47]

    Cao C, Wang X 2021 Phys. Rev. Applied. 15 054012Google Scholar

    [48]

    Cerezo M, Sone A, Volkoff T, Patrick L C, Coles J 2021 Nat. Commun. 12 1791Google Scholar

    [49]

    Gao X, Zhang Z Y, Duan L-M 2018 Sci. Adv. 4 eaat9004Google Scholar

    [50]

    Gao X, Anschuetz E R, Wang S T, Cirac J I, Lukin M D 2021 arXiv: 2101.08354 v1 [quant-ph]

  • [1] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度.  , 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [2] 覃俭. 光源相位噪声对高斯玻色采样的影响.  , 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [3] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用.  , 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [4] 沈培鑫, 蒋文杰, 李炜康, 鲁智德, 邓东灵. 量子人工智能中的对抗学习.  , 2021, 70(14): 140302. doi: 10.7498/aps.70.20210789
    [5] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [6] 赵健, 陈昭昀, 庄希宁, 薛程, 吴玉椿, 郭国平. 量子态制备及其在量子机器学习中的前景.  , 2021, 70(14): 140307. doi: 10.7498/aps.70.20210958
    [7] 田宇, 林子栋, 王翔宇, 车良宇, 鲁大为. 基于自旋体系的量子机器学习实验进展.  , 2021, 70(14): 140305. doi: 10.7498/aps.70.20210684
    [8] 李保民, 胡明亮, 范桁. 量子相干.  , 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [9] 李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕. 一种基于von Neumann熵的双路径纠缠量子微波信号生成质量评估方法.  , 2016, 65(11): 114204. doi: 10.7498/aps.65.114204
    [10] 范洪义, 吴泽. 二项-负二项组合光场态的光子统计性质及其在量子扩散通道中的生成.  , 2015, 64(8): 080303. doi: 10.7498/aps.64.080303
    [11] 梁彦霞, 聂敏. 一种应用于量子数据压缩的幺正变换生成方法.  , 2013, 62(20): 200305. doi: 10.7498/aps.62.200305
    [12] 陈基根, 曾思良, 杨玉军, 程超. 三色激光控制量子路径生成短于30阿秒的孤立脉冲.  , 2012, 61(12): 123201. doi: 10.7498/aps.61.123201
    [13] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子经典对应关系.  , 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [14] 陈基根, 陈高, 池方萍, 杨玉军. 量子路径控制生成宽频软X射线连续辐射谱.  , 2010, 59(5): 3162-3167. doi: 10.7498/aps.59.3162
    [15] 张盛, 王剑, 张权, 唐朝京. 量子密码协议的错误序列模型分析.  , 2009, 58(1): 73-77. doi: 10.7498/aps.58.73
    [16] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干.  , 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [17] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌.  , 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [18] 马余强, 李振亚. 无规场量子Ising模型的研究.  , 1990, 39(9): 1480-1487. doi: 10.7498/aps.39.1480
    [19] 顾樵. Jaynes-Cummings模型的量子统计性质.  , 1989, 38(5): 735-744. doi: 10.7498/aps.38.735
    [20] 郑伟谋, 刘寄星. 量子双阱势准确解模型.  , 1985, 34(12): 1658-1664. doi: 10.7498/aps.34.1658
计量
  • 文章访问数:  7219
  • PDF下载量:  365
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 修回日期:  2021-06-30
  • 上网日期:  2021-07-10
  • 刊出日期:  2021-07-20

/

返回文章
返回
Baidu
map