-
The exchange bias has a crucial influence on the key performance parameters of magneroresistive sensor, which has wide applications in many fields. This paper presents a method that uses the Joule heating effect combined with a magnetic field to modulate the exchange bias in magnetic multilayers. By this method, we systematically modulate the in-plane exchange bias field (Heb) in the inverted (Co/Pt)n/Co/IrMn structure (n + 1 is the repetition of the Co layers), here the thickness of the Pt layer is smaller than that of the Co layer. In these inverted structures, the Heb can be continuously modulated by changing the amplitude of a pulse current IDC (an in-plane magnetic field Hp) after fixing an Hp (IDC). In more detail, the Heb deceases gradually by increasing the IDC and its polarity of the Heb can be reversed finally, which will not disappear even under a large IDC. Furthermore, if both the amplitude and direction of IDC (Hp) are changed, with a Hp (IDC) fixed, a reversal of Heb can be realized from positive (negative) to negative (positive) direction under a large IDC. From here, one may find that the modulation of the exchange bias in our text is totally different from the normal case one thinks, where the Heb becomes zero under a large enough IDC due to the pure heating effect. Therefore, we believe that the above results show that our method can modulate in situ the linear field range and sensitivity, which has important significance in guiding the optimization of the performance parameters of magneroresistive sensors.
-
Keywords:
- magneroresistive sensors /
- exchange bias effect /
- current-induced Joule heating /
- perpendicular magnetic multilayers
[1] Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413
Google Scholar
[2] Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904
Google Scholar
[3] Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828
[4] Baibich M N, Broto J M, Fert A, Nguyen van Dau F, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472
Google Scholar
[5] Parkin S S P, Roche K P, Samant M G, Rice P M, Beyers R B, Scheuerlein R E, O’Sullivan E J, Brown S L, Bucchigano J, Abraham D W, Lu Y, Rooks M, Trouilloud P L, Wanner R A, Gallagher W J 1999 J. Appl. Phys. 85 5828
Google Scholar
[6] Freitas P P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys. Cond. Mat. 19 165221
Google Scholar
[7] Dieny B, Speriosu V S, Parkin S S P, Gurney B A, Wilhoit D R, Mauri D 1991 Phys. Rev. B 43 1297
Google Scholar
[8] Stamps R L 2000 J. Phys. D Appl. Phys. 33 R247
Google Scholar
[9] Nogué J, Schuller Ivan K 1999 J. Magn. Magn. Mater. 192 203
Google Scholar
[10] Nogué J, Sort J, Langlais V, Skumryeva V, Suriñachb S, Muñozb J S, Barób M D 2005 Phys. Rep. 422 65
Google Scholar
[11] Jungblut R, Coehoorn R, Johnson M T, aan de Stegge J, Reinders A 1994 J. Appl. Phys. 75 6659
Google Scholar
[12] Imakita K I, Tsunoda M, Takahashi M 2004 Appl. Phys. Lett. 85 3812
Google Scholar
[13] Garcia F, Moritz J, Ernult F, Auffret S, Rodmacq B, Dieny B, Camarero J, Pennec Y, Pizzini S, Vogel J 2002 IEEE Trans. Magn. 38 2730
Google Scholar
[14] Chen J Y, Feng J F, Diao Z, Feng G, Coey J M D, Han X-F 2010 IEEE Trans. Magn. 46 1401
Google Scholar
[15] Feng J F, Liu H F, Wei H X, Zhang X G, Ren Y, Li X, Wang Y, Wang J P, Han X F 2017 Phys. Rev. Appl. 7 054005
Google Scholar
[16] Zaag P J van der, Feiner L F, Wolf R M, Borchers J A, Ijiri Y, Erwin R W 2000 Physica B 276 638
[17] Eckert J C, Stern N P, Snowden D S, Sparks P D, Carey M J 2003 J. Appl. Phys. 93 6608
Google Scholar
[18] Devasahayam A J, Sides P J, Kryder M H 1998 J. Appl. Phys. 83 7216
Google Scholar
[19] Lombard L, Gapihan E, Sousa R C, Dahmane Y, Conraux Y, Portemont C, Ducruet C, Papusoi C, Prejbeanu I L, Nozières J P, Dieny B, Schuhl A 2010 J. Appl. Phys. 107 09D728
Google Scholar
[20] Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508
Google Scholar
[21] Wu S M, Cybart S A, Yi D, Parker J M, Ramesh R, Dynes R C 2013 Phys. Rev. Lett. 110 067202
Google Scholar
[22] Shiratsuchi Y, Tao Y R, Toyoki K, Nakatani R 2021 Magnetochemistry 7 36
Google Scholar
[23] Tang X L, Zhang H W, Su H, Zhong Z Y, Jing Y L 2007 Appl. Phys. Lett. 91 122504
Google Scholar
[24] Kim H J, Je S G, Jung D H, Lee K S, Hong J 2019 Appl. Phys. Lett. 115 022401
Google Scholar
[25] Papusoi C, Sousa R C, Dieny B, Prejbeanu I L, Conraux Y, Mackay K, Nozières J P 2008 J. Appl. Phys. 104 013915
Google Scholar
[26] Yuan Z H, Huang L, Feng J F, Wen Z C, Li D L, Han X F, Nakano T, Yu T, Naganuma H 2015 J. Appl. Phys. 118 053904
Google Scholar
[27] Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903
Google Scholar
[28] Jenkins S, Chantrell R W, Evans R F L 2021 Phys. Rev. B 103 014424
Google Scholar
[29] Baltz V, Sort J, Landis S, Rodmacq B, Dieny B, 2005 Phys. Rev. Lett. 94 117201
[30] Shi Z, Du J, Zhou S M 2014 Chin. Phys. B 23 027503
Google Scholar
[31] Zhou X F, Chen X Z, You Y F, Liao L Y, Bai H, Zhang R Q, Zhou Y J, Wu H Q, Song C, Pan F 2020 Phys. Rev. Appl. 14 054037
Google Scholar
[32] 陈栖洲, 汪学锋, 张怀武, 钟智勇 2011 磁性材料及器件 42 4
Google Scholar
Chen X Z, Wang X F, Zhang H W, Zhong Z Y 2011 J. Magn. Mater. Devices 42 4
Google Scholar
[33] Ranjbar S, Mahdawi M, Oogane M, Ando Y 2020 AIP Adv. 10 025119
Google Scholar
-
图 2 (a)脉冲电流(IDC)产生的焦耳热对应的样品温度与IDC的关系; (b)n+1 = 2的垂直多层膜结构的Heb随着温度的变化关系. (a)中插图是n+1 = 2的垂直多层膜结构的RH随着温度的线性变化关系
Figure 2. The sample temperature due to the Joule heating as a function of IDC; (b) the temperature dependence of Heb for n+1 = 2. The insert in (a) shows the linear relation between RH and the temperature for n+1 = 2.
图 5 (a)—(c) n+1 = 2和3的垂直多层膜结构的面内RH-H原始曲线以及施加不同Hp和2 s/45 mA后、4 kOe和2 s/±49 mA后和±2 kOe和2 s/–40 mA后再在1 mA时测量获得的面内RH-H曲线; (d)(c)图在小磁场范围的RH-H曲线放大图, 显示了界面Co层的磁矩信号
Figure 5. (a)–(c) The in-plane RH-H curves for n+1 = 2 (3) after applied different Hp and IDC, taken at 1 mA; (d) the zoom of the in-plane RH-H curves shown in (c), which only gives the moment variation of the interface Co layer.
图 6 n+1 = 2—6的垂直多层膜结构在IDC = 40 mA和Hp = 2 kOe时获得的ΔHeb, 不同n+1的垂直多层膜结构的Heb绝对值也放在了图中. 插图是n+1 = 2的垂直多层膜结构在IDC = 40 mA和Hp = 1—4 kOe时获得的ΔHeb
Figure 6. The ΔHeb at IDC = 40 mA and Hp = 2 kOe for n+1. The absolute Heb changing with n+1 is also shown. The insert shows the Hp dependence of ΔHeb for n+1 = 2 at IDC = 40 mA and Hp = 1–4 kOe.
-
[1] Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413
Google Scholar
[2] Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904
Google Scholar
[3] Binasch G, Grünberg P, Saurenbach F, Zinn W 1989 Phys. Rev. B 39 4828
[4] Baibich M N, Broto J M, Fert A, Nguyen van Dau F, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472
Google Scholar
[5] Parkin S S P, Roche K P, Samant M G, Rice P M, Beyers R B, Scheuerlein R E, O’Sullivan E J, Brown S L, Bucchigano J, Abraham D W, Lu Y, Rooks M, Trouilloud P L, Wanner R A, Gallagher W J 1999 J. Appl. Phys. 85 5828
Google Scholar
[6] Freitas P P, Ferreira R, Cardoso S, Cardoso F 2007 J. Phys. Cond. Mat. 19 165221
Google Scholar
[7] Dieny B, Speriosu V S, Parkin S S P, Gurney B A, Wilhoit D R, Mauri D 1991 Phys. Rev. B 43 1297
Google Scholar
[8] Stamps R L 2000 J. Phys. D Appl. Phys. 33 R247
Google Scholar
[9] Nogué J, Schuller Ivan K 1999 J. Magn. Magn. Mater. 192 203
Google Scholar
[10] Nogué J, Sort J, Langlais V, Skumryeva V, Suriñachb S, Muñozb J S, Barób M D 2005 Phys. Rep. 422 65
Google Scholar
[11] Jungblut R, Coehoorn R, Johnson M T, aan de Stegge J, Reinders A 1994 J. Appl. Phys. 75 6659
Google Scholar
[12] Imakita K I, Tsunoda M, Takahashi M 2004 Appl. Phys. Lett. 85 3812
Google Scholar
[13] Garcia F, Moritz J, Ernult F, Auffret S, Rodmacq B, Dieny B, Camarero J, Pennec Y, Pizzini S, Vogel J 2002 IEEE Trans. Magn. 38 2730
Google Scholar
[14] Chen J Y, Feng J F, Diao Z, Feng G, Coey J M D, Han X-F 2010 IEEE Trans. Magn. 46 1401
Google Scholar
[15] Feng J F, Liu H F, Wei H X, Zhang X G, Ren Y, Li X, Wang Y, Wang J P, Han X F 2017 Phys. Rev. Appl. 7 054005
Google Scholar
[16] Zaag P J van der, Feiner L F, Wolf R M, Borchers J A, Ijiri Y, Erwin R W 2000 Physica B 276 638
[17] Eckert J C, Stern N P, Snowden D S, Sparks P D, Carey M J 2003 J. Appl. Phys. 93 6608
Google Scholar
[18] Devasahayam A J, Sides P J, Kryder M H 1998 J. Appl. Phys. 83 7216
Google Scholar
[19] Lombard L, Gapihan E, Sousa R C, Dahmane Y, Conraux Y, Portemont C, Ducruet C, Papusoi C, Prejbeanu I L, Nozières J P, Dieny B, Schuhl A 2010 J. Appl. Phys. 107 09D728
Google Scholar
[20] Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508
Google Scholar
[21] Wu S M, Cybart S A, Yi D, Parker J M, Ramesh R, Dynes R C 2013 Phys. Rev. Lett. 110 067202
Google Scholar
[22] Shiratsuchi Y, Tao Y R, Toyoki K, Nakatani R 2021 Magnetochemistry 7 36
Google Scholar
[23] Tang X L, Zhang H W, Su H, Zhong Z Y, Jing Y L 2007 Appl. Phys. Lett. 91 122504
Google Scholar
[24] Kim H J, Je S G, Jung D H, Lee K S, Hong J 2019 Appl. Phys. Lett. 115 022401
Google Scholar
[25] Papusoi C, Sousa R C, Dieny B, Prejbeanu I L, Conraux Y, Mackay K, Nozières J P 2008 J. Appl. Phys. 104 013915
Google Scholar
[26] Yuan Z H, Huang L, Feng J F, Wen Z C, Li D L, Han X F, Nakano T, Yu T, Naganuma H 2015 J. Appl. Phys. 118 053904
Google Scholar
[27] Huang L, Yuan Z H, Tao B S, Wan C H, Guo P, Zhang Q T, Yin L, Feng J F, Nakano T, Naganuma H, Liu H F, Yan Y, Han X F 2017 J. Appl. Phys. 122 113903
Google Scholar
[28] Jenkins S, Chantrell R W, Evans R F L 2021 Phys. Rev. B 103 014424
Google Scholar
[29] Baltz V, Sort J, Landis S, Rodmacq B, Dieny B, 2005 Phys. Rev. Lett. 94 117201
[30] Shi Z, Du J, Zhou S M 2014 Chin. Phys. B 23 027503
Google Scholar
[31] Zhou X F, Chen X Z, You Y F, Liao L Y, Bai H, Zhang R Q, Zhou Y J, Wu H Q, Song C, Pan F 2020 Phys. Rev. Appl. 14 054037
Google Scholar
[32] 陈栖洲, 汪学锋, 张怀武, 钟智勇 2011 磁性材料及器件 42 4
Google Scholar
Chen X Z, Wang X F, Zhang H W, Zhong Z Y 2011 J. Magn. Mater. Devices 42 4
Google Scholar
[33] Ranjbar S, Mahdawi M, Oogane M, Ando Y 2020 AIP Adv. 10 025119
Google Scholar
Catalog
Metrics
- Abstract views: 4352
- PDF Downloads: 73
- Cited By: 0