Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sensitivity-enhanced temperature sensor with fiber optic Fabry-Perot interferometer based on vernier effect

Yang Yi Xu Ben Liu Ya-Ming Li Ping Wang Dong-Ning Zhao Chun-Liu

Citation:

Sensitivity-enhanced temperature sensor with fiber optic Fabry-Perot interferometer based on vernier effect

Yang Yi, Xu Ben, Liu Ya-Ming, Li Ping, Wang Dong-Ning, Zhao Chun-Liu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Fiber-optic temperature sensors have gained much attention owing to their intrinsic features of light weight, immunity to electromagnetic interference, and capability for distributed measurement. Especially, temperature sensors based on Fabry-Perot interferometers (FPIs) are attractive owing to their advantages of compact size and convenient reflection measurement. However, due to the low thermal expansion or/and thermo-optic coefficient of fiber, the temperature sensitivities of these sensors are normally low (~10 pm/℃ or even lower). In order to improve the temperature sensitivity, a device with dual cascaded FPIs is proposed and demonstrated in this paper, which works on vernier effect and exhibits a much higher temperature sensitivity. The device is fabricated by splicing a short segment of large mode area (LMA) fiber to a short segment of capillary tube fused with a section of single-mode fiber to form an extrinsic Fabry-Perot interferometer with a glass cavity cascaded to an intrinsic FPI with a narrow air cavity. By setting the lengths of capillary tube and LMA fiber to allow similar free spectral ranges to be obtained, and superimposing of the reflection spectra of the two FPIs, the vernier effect can be generated. Firstly, the principle of temperature sensing based on vernier effect of this device is analyzed and simulated theoretically, and it is found that the temperature sensitivity can be improved significantly by using vernier effect compared with that of a single FPI with an air-cavity or glass cavity by directly tracing resonant dips/peaks. Then, the temperature responses of the FPI with single air-cavity and dual cascaded cavities are measured, respectively. Experimental results match well with the theoretical analysis carried out. The temperature sensitivity of the proposed sensor is improved greatly from 0.71 pm/℃ for a single FPI sensor with an air-cavity to 179.30 pm/℃ by employing the vernier effect. Additionally, the sensor exhibits good repeatability in a temperature range of 100-500℃. The proposed sensor has the advantages of compact size (1 mm in dimension) and high sensitivity, which makes it promising for temperature sensing in a variety of industries, such as food inspection, pharmacy, oil/gas exploration, environment, and high-voltage power systems.
      Corresponding author: Xu Ben, xuben@cjlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61405184) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY17F050010).
    [1]

    Lee B 2003 Opt. Fiber Technol. 9 57

    [2]

    Fu X H, Xie H Y, Yang C Q, Zhang S Y, Fu G W, Bi W H 2016 Acta Phys. Sin. 65 24211 (in Chinese) [付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红 2016 65 24211]

    [3]

    Gui X, Hu C C, Xie Y, Li Z Y 2015 Acta Phys. Sin. 64 050704 (in Chinese) [桂鑫, 胡陈晨, 谢莹, 李政颖 2015 64 050704]

    [4]

    Miao Y P, Yao J Q 2013 Acta Phys. Sin. 62 044223 (in Chinese) [苗银萍, 姚建铨 2013 62 044223]

    [5]

    Grattan K T V, Sun T 2000 Optical Fiber Sensor Technology (New York: Springer) p1

    [6]

    Islam M R, Ali M M, Lai M H, Lim K S, Ahmad H 2014 Sensors 14 7451

    [7]

    Lee C L, Lee L H, Hwang H E, Hsu J M 2012 IEEE Photon. Technol. Lett. 24 149

    [8]

    Qi F, Hu L, Dong X, Xin Y, Zhao C L, Jin S, Chan J C C 2013 IEEE Sensors J. 13 3468

    [9]

    Wang Y, Wang D N, Liao C R, Hu T, Guo J, Wei H 2013 Opt. Lett. 38 269

    [10]

    Wang J J, Dong B, Lally E, Gong J M, Han M, Wang A B 2010 Opt. Lett. 35 619

    [11]

    Chen L H, Li T, Chan C C, Menon R, Balamurali P, Shaillender M, Neu B, Ang X M, Zu P, Wong W C, Leong K C 2012 Sens. Actuators B 169 167

    [12]

    Yu C B, Liu L, Chen X X, Liu Q F, Gong Y 2015 Photon. Sens. 5 142

    [13]

    Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252

    [14]

    Tian J J, Lu Y J, Zhang Q, Han M 2013 Opt. Express 21 6633

    [15]

    Wang R H, Qiao X G 2015 IEEE Photon. Technol. Lett. 27 245

    [16]

    Lu Y J, Han M, Tian J J 2014 IEEE Photon. Technol. Lett. 26 757

    [17]

    Dai D X 2009 Opt. Express 17 23817

    [18]

    Jin L, Li M, He J J 2009 Asia Communications and Photonics Conference and Exhibition Shanghai, China, November 2-6, 2009 pTUM4

    [19]

    Zhang P, Tang M, Gao F, Zhu B, Fu S, Ouyang J, Shum P P, Liu D 2014 Opt. Express 22 19581

    [20]

    Shao L Y, Luo Y, Zhang Z, Zou X, Luo B, Pan W, Yan L 2015 Opt. Commun. 336 73

    [21]

    Yu Y, Chen X, Huang Q, Du C, Ruan S, Wei H 2015 Appl. Phys. B 120 461

    [22]

    Lee B H, Kim Y H, Park K S, Eom J B, Kim M J, Rho B S, Choi H Y 2012 Sensors 12 2467

    [23]

    Liao C R, Hu T Y, Wang D N 2012 Opt. Express 20 22813

    [24]

    Quan M, Tian J, Yao Y 2015 Opt. Lett. 40 4891

    [25]

    Ma J, Ju J, Jin L, Jin W, Wang D 2011 Opt. Express 19 12418

    [26]

    Jasim A A, Harun S W, Arof H, Ahmad H 2013 IEEE Sensors J. 13 626

    [27]

    Zhou Y, Zhou W, Chan C C, Wei C W, Shao L Y, Cheng J, Dong X 2011 Opt. Commun. 284 5669

    [28]

    Li L, Zhang G, Liu Y, Bi L, Jiang L, Li Y, Yao J, Gao C, Zhang Y, Khan A R, Ma Q 2015 Asia Communications and Photonics Conference Hong Kong, China, November 19-23, 2015 pASu2A.50

    [29]

    Zhu Y, Shum P, Bay H W, Yan M, Yu X, Hu J, Hao J, Lu C 2005 Opt. Lett. 30 367

  • [1]

    Lee B 2003 Opt. Fiber Technol. 9 57

    [2]

    Fu X H, Xie H Y, Yang C Q, Zhang S Y, Fu G W, Bi W H 2016 Acta Phys. Sin. 65 24211 (in Chinese) [付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红 2016 65 24211]

    [3]

    Gui X, Hu C C, Xie Y, Li Z Y 2015 Acta Phys. Sin. 64 050704 (in Chinese) [桂鑫, 胡陈晨, 谢莹, 李政颖 2015 64 050704]

    [4]

    Miao Y P, Yao J Q 2013 Acta Phys. Sin. 62 044223 (in Chinese) [苗银萍, 姚建铨 2013 62 044223]

    [5]

    Grattan K T V, Sun T 2000 Optical Fiber Sensor Technology (New York: Springer) p1

    [6]

    Islam M R, Ali M M, Lai M H, Lim K S, Ahmad H 2014 Sensors 14 7451

    [7]

    Lee C L, Lee L H, Hwang H E, Hsu J M 2012 IEEE Photon. Technol. Lett. 24 149

    [8]

    Qi F, Hu L, Dong X, Xin Y, Zhao C L, Jin S, Chan J C C 2013 IEEE Sensors J. 13 3468

    [9]

    Wang Y, Wang D N, Liao C R, Hu T, Guo J, Wei H 2013 Opt. Lett. 38 269

    [10]

    Wang J J, Dong B, Lally E, Gong J M, Han M, Wang A B 2010 Opt. Lett. 35 619

    [11]

    Chen L H, Li T, Chan C C, Menon R, Balamurali P, Shaillender M, Neu B, Ang X M, Zu P, Wong W C, Leong K C 2012 Sens. Actuators B 169 167

    [12]

    Yu C B, Liu L, Chen X X, Liu Q F, Gong Y 2015 Photon. Sens. 5 142

    [13]

    Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252

    [14]

    Tian J J, Lu Y J, Zhang Q, Han M 2013 Opt. Express 21 6633

    [15]

    Wang R H, Qiao X G 2015 IEEE Photon. Technol. Lett. 27 245

    [16]

    Lu Y J, Han M, Tian J J 2014 IEEE Photon. Technol. Lett. 26 757

    [17]

    Dai D X 2009 Opt. Express 17 23817

    [18]

    Jin L, Li M, He J J 2009 Asia Communications and Photonics Conference and Exhibition Shanghai, China, November 2-6, 2009 pTUM4

    [19]

    Zhang P, Tang M, Gao F, Zhu B, Fu S, Ouyang J, Shum P P, Liu D 2014 Opt. Express 22 19581

    [20]

    Shao L Y, Luo Y, Zhang Z, Zou X, Luo B, Pan W, Yan L 2015 Opt. Commun. 336 73

    [21]

    Yu Y, Chen X, Huang Q, Du C, Ruan S, Wei H 2015 Appl. Phys. B 120 461

    [22]

    Lee B H, Kim Y H, Park K S, Eom J B, Kim M J, Rho B S, Choi H Y 2012 Sensors 12 2467

    [23]

    Liao C R, Hu T Y, Wang D N 2012 Opt. Express 20 22813

    [24]

    Quan M, Tian J, Yao Y 2015 Opt. Lett. 40 4891

    [25]

    Ma J, Ju J, Jin L, Jin W, Wang D 2011 Opt. Express 19 12418

    [26]

    Jasim A A, Harun S W, Arof H, Ahmad H 2013 IEEE Sensors J. 13 626

    [27]

    Zhou Y, Zhou W, Chan C C, Wei C W, Shao L Y, Cheng J, Dong X 2011 Opt. Commun. 284 5669

    [28]

    Li L, Zhang G, Liu Y, Bi L, Jiang L, Li Y, Yao J, Gao C, Zhang Y, Khan A R, Ma Q 2015 Asia Communications and Photonics Conference Hong Kong, China, November 19-23, 2015 pASu2A.50

    [29]

    Zhu Y, Shum P, Bay H W, Yan M, Yu X, Hu J, Hao J, Lu C 2005 Opt. Lett. 30 367

  • [1] Wang Song, Zhou Chuang, Li Su-Wen, Mou Fu-Sheng. Method of measuring atmospheric CO2 based on Fabry-Perot interferometer. Acta Physica Sinica, 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] Ma Tian-Bing, Zi Bao-Wei, Guo Yong-Cun, Ling Liu-Yi, Huang You-Rui, Jia Xiao-Fen. Distributed optical fiber temperature sensor based on self-compensation of fitting attenuation difference. Acta Physica Sinica, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [3] Zhang Wei, Liu Ying-Gang, Zhang Ting, Liu Xin, Fu Hai-Wei, Jia Zhen-An. Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor. Acta Physica Sinica, 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [4] He Zu-Yuan, Liu Qing-Wen, Chen Jia-Geng. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation. Acta Physica Sinica, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [5] Liu Tie-Gen, Yu Zhe, Jiang Jun-Feng, Liu Kun, Zhang Xue-Zhi, Ding Zhen-Yang, Wang Shuang, Hu Hao-Feng, Han Qun, Zhang Hong-Xia, Li Zhi-Hong. Advances of some critical technologies in discrete and distributed optical fiber sensing research. Acta Physica Sinica, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [6] Li Zheng-Ying, Zhou Lei, Sun Wen-Feng, Li Zi-Mo, Wang Jia-Qi, Guo Hui-Yong, Wang Hong-Hai. High speed and high precision demodulation method of fiber grating based on dispersion effect. Acta Physica Sinica, 2017, 66(1): 014206. doi: 10.7498/aps.66.014206
    [7] Dong Yong-Kang, Zhou Deng-Wang, Teng Lei, Jiang Tao-Fei, Chen Xi. Principle of Brillouin dynamic grating and its applications in optical fiber sensing. Acta Physica Sinica, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [8] Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing. A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Physica Sinica, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [9] Li Zi-Liang, Liao Chang-Rui, Liu Shen, Wang Yi-Ping. Research progress of in-fiber Fabry-Perot interferometric temperature and pressure sensors. Acta Physica Sinica, 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [10] Deng Chun-Yu, Hou Shang-Lin, Lei Jing-Li, Wang Dao-Bin, Li Xiao-Xiao. Simultaneous measurement on strain and temperature via guided acoustic-wave Brillouin scattering in single mode fibers. Acta Physica Sinica, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [11] Cao Ye, Pei Yong-Wei, Tong Zheng-Rong. Simultaneous measurement of temperature and bending-curvature using a single local micro-structured longperiod fiber grating. Acta Physica Sinica, 2014, 63(2): 024206. doi: 10.7498/aps.63.024206
    [12] Wang Ting-Ting, Ge Yi-Xian, Chang Jian-Hua, Ke Wei, Wang Ming. Refractive index sensing characteristic of a hybrid-Fabry-Pérot interferometer based on an in-fiber ellipsoidal cavity. Acta Physica Sinica, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [13] Hao Hui, Xia Wei, Wang Ming, Guo Dong-Mei, Ni Xiao-Qi. Self-mixing interference effect based on fiber laser. Acta Physica Sinica, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [14] Yang Shen, Rong Qiang-Zhou, Sun Hao, Zhang Jing, Liang Lei, Xu Qin-Fang, Zhan Su-Chang, Du Yan-Ying, Feng Ding-Yi, Qiao Xue-Guang, Hu Man-Li. High temperature probe sensor with high sensitivity based on Michelson interferometer. Acta Physica Sinica, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [15] Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system. Acta Physica Sinica, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [16] Qin Wei, Zhang Yu-Bin, Xie Shi-Jie. Study on the temperature effect of magnetoresistance in organic device Co/Alq3/La1-xSrxMnO3(LSMO). Acta Physica Sinica, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [17] Guo Wen-Gang, Yang Xiu-Feng, Luo Shao-Jun, Li Yong-Nan, Tu Cheng-Hou, Lü Fu-Yun, Wang Hong-Jie, Li En-Bang, Lü Chao. A fiber sensor for measuring gas concentration based on laser’s transient regime. Acta Physica Sinica, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [18] Chen Guo-Qing, Wu Ya-Min, Lu Xing-Zhong. Temperature effects of optical bistability of metal/dielectric granular composites. Acta Physica Sinica, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [19] Zhu Tao, Rao Yun-Jiang, Mo Qiu-Ju. A high sensitivity fiber-optic torsion sensor based on a novel ultra long-period fiber grating. Acta Physica Sinica, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] Qiao Xue-Guang, Jia Zhen-An, Fu Hai-Wei, Li Ming, Zhou Hong. Theory and experiment about in-fiber Bragg grating temperature sensing. Acta Physica Sinica, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
Metrics
  • Abstract views:  9805
  • PDF Downloads:  675
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2016
  • Accepted Date:  21 December 2016
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map